|
GammaLib 2.2.0.dev
|
Abstract observation base class implementation. More...
#include "GTools.hpp"#include "GException.hpp"#include "GIntegral.hpp"#include "GDerivative.hpp"#include "GVector.hpp"#include "GVectorSparse.hpp"#include "GMatrixSparse.hpp"#include "GObservation.hpp"#include "GResponse.hpp"#include "GEventCube.hpp"#include "GEventList.hpp"#include "GEventBin.hpp"#include "GModel.hpp"#include "GModels.hpp"#include "GModelPar.hpp"#include "GModelSky.hpp"#include "GModelData.hpp"Go to the source code of this file.
Macros | |
| #define | G_LIKELIHOOD |
| #define | G_MODEL1 "GObservation::model(GModels&, GEvent&, GVector*)" |
| #define | G_MODEL2 "GObservation::model(GModels&, GMatrixSparse*)" |
| #define | G_EVENTS "GObservation::events()" |
| #define | G_NPRED "GObservation::npred(GModel&)" |
| #define | G_NPRED_SPEC "GObservation::npred_spec(GModel&, GTime&)" |
| #define | G_LN_ENERGY_INT |
| ln(E) variable substitution for integration | |
| #define | G_MODEL_COLUMN_FILL |
| Use column fill for sparse matrix. | |
| #define | G_MODEL_SPARSE_VECTOR |
| Use sparse vector for sparse matrix. | |
| #define | G_LIKELIHOOD_SPARSE_VECTOR |
| Use sparse vector for sparse matrix. | |
Variables | |
| const double | minmod = 1.0e-100 |
| Minimum model value. | |
| const double | minerr = 1.0e-100 |
| Minimum statistical error. | |
Abstract observation base class implementation.
Definition in file GObservation.cpp.
| #define G_EVENTS "GObservation::events()" |
Definition at line 54 of file GObservation.cpp.
Referenced by GObservation::events(), and GObservation::events().
| #define G_LIKELIHOOD |
Definition at line 50 of file GObservation.cpp.
Referenced by GCTAOnOffObservation::likelihood(), and GObservation::likelihood().
| #define G_LIKELIHOOD_SPARSE_VECTOR |
Use sparse vector for sparse matrix.
Definition at line 68 of file GObservation.cpp.
| #define G_LN_ENERGY_INT |
ln(E) variable substitution for integration
Definition at line 65 of file GObservation.cpp.
Definition at line 52 of file GObservation.cpp.
Referenced by GObservation::model().
| #define G_MODEL2 "GObservation::model(GModels&, GMatrixSparse*)" |
Definition at line 53 of file GObservation.cpp.
Referenced by GObservation::model().
| #define G_MODEL_COLUMN_FILL |
Use column fill for sparse matrix.
Definition at line 66 of file GObservation.cpp.
| #define G_MODEL_SPARSE_VECTOR |
Use sparse vector for sparse matrix.
Definition at line 67 of file GObservation.cpp.
| #define G_NPRED "GObservation::npred(GModel&)" |
Definition at line 55 of file GObservation.cpp.
Definition at line 56 of file GObservation.cpp.
| const double minerr = 1.0e-100 |
Minimum statistical error.
Definition at line 60 of file GObservation.cpp.
Referenced by GObservation::likelihood_gaussian_binned().
| const double minmod = 1.0e-100 |
Minimum model value.
Definition at line 59 of file GObservation.cpp.
Referenced by GCTAOnOffObservation::likelihood_cstat(), GObservation::likelihood_gaussian_binned(), GObservation::likelihood_poisson_binned(), and GObservation::likelihood_poisson_unbinned().