GammaLib 2.0.0
Loading...
Searching...
No Matches
GModelSpatialRadialProfileDMEinasto.cpp
Go to the documentation of this file.
1/***************************************************************************
2 * GModelSpatialRadialProfileDMEinasto.cpp - Einasto radial profile class *
3 * ----------------------------------------------------------------------- *
4 * copyright (C) 2016-2021 by Nathan Kelley-Hoskins *
5 * ----------------------------------------------------------------------- *
6 * *
7 * This program is free software: you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation, either version 3 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
19 * *
20 ***************************************************************************/
21/**
22 * @file GModelSpatialRadialProfileDMEinasto.cpp
23 * @brief Radial DM Einasto profile model class implementation
24 * @author Nathan Kelley-Hoskins
25 */
26
27/* __ Includes ___________________________________________________________ */
28#ifdef HAVE_CONFIG_H
29#include <config.h>
30#endif
31#include "GException.hpp"
32#include "GTools.hpp"
33#include "GMath.hpp"
34#include "GXmlElement.hpp"
37
38/* __ Constants __________________________________________________________ */
39
40/* __ Globals ____________________________________________________________ */
42const GModelSpatialRegistry g_radial_disk_registry(&g_radial_disk_seed);
43
44/* __ Method name definitions ____________________________________________ */
45#define G_READ "GModelSpatialRadialProfileDMEinasto::read(GXmlElement&)"
46#define G_WRITE "GModelSpatialRadialProfileDMEinasto::write(GXmlElement&)"
47
48/* __ Macros _____________________________________________________________ */
49
50/* __ Coding definitions _________________________________________________ */
51
52/* __ Debug definitions __________________________________________________ */
53
54
55/*==========================================================================
56 = =
57 = Constructors/destructors =
58 = =
59 ==========================================================================*/
60
61/***********************************************************************//**
62 * @brief Void constructor
63 *
64 * Constructs empty radial DMEinasto profile
65 ***************************************************************************/
68{
69 // Initialise members
71
72 // Return
73 return;
74}
75
76
77/***********************************************************************//**
78 * @brief XML constructor
79 *
80 * @param[in] xml XML element.
81 *
82 * Constructs radial DMEinasto profile model by extracting information from
83 * an XML element. See the read() method for more information about the
84 * expected structure of the XML element.
85 ***************************************************************************/
88{
89 // Initialise members
91
92 // Read information from XML element
93 read(xml);
94
95 // Return
96 return;
97}
98
99
100/***********************************************************************//**
101 * @brief Copy constructor
102 *
103 * @param[in] model Radial DMEinasto profile model.
104 *
105 * Copies radial DMEinasto profile model from another radial profile model.
106 ***************************************************************************/
109{
110 // Initialise members
111 init_members();
112
113 // Copy members
114 copy_members(model);
115
116 // Return
117 return;
118}
119
120
121/***********************************************************************//**
122 * @brief Destructor
123 *
124 * Destructs radial DMEinasto profile model.
125 ***************************************************************************/
127{
128 // Free members
129 free_members();
130
131 // Return
132 return;
133}
134
135
136/*==========================================================================
137 = =
138 = Operators =
139 = =
140 ==========================================================================*/
141
142/***********************************************************************//**
143 * @brief Assignment operator
144 *
145 * @param[in] model Radial DMEinasto profile model.
146 * @return Radial DMEinasto profile model.
147 *
148 * Assigns radial DMEinasto profile model.
149 ***************************************************************************/
151{
152 // Execute only if object is not identical
153 if (this != &model) {
154
155 // Copy base class members
157
158 // Free members
159 free_members();
160
161 // Initialise members
162 init_members();
163
164 // Copy members
165 copy_members(model);
166
167 } // endif: object was not identical
168
169 // Return
170 return *this;
171}
172
173
174/*==========================================================================
175 = =
176 = Public methods =
177 = =
178 ==========================================================================*/
179
180/***********************************************************************//**
181 * @brief Clear radial DMEinasto profile model
182 *
183 * Clears radial DMEinasto profile model.
184 ***************************************************************************/
186{
187 // Free class members
188 free_members();
192
193 // Initialise members
197 init_members();
198
199 // Return
200 return;
201}
202
203
204/***********************************************************************//**
205 * @brief Clone radial DMEinasto profile model
206 *
207 * @return Pointer to deep copy of radial DMEinasto profile model.
208 *
209 * Returns a deep copy of the radial DMEinasto profile model.
210 ***************************************************************************/
212{
213 // Clone radial disk model
214 return new GModelSpatialRadialProfileDMEinasto(*this);
215}
216
217
218/***********************************************************************//**
219 * @brief Return minimum model radius (in radians)
220 *
221 * @return Minimum model radius (in radians).
222 ***************************************************************************/
224{
225
226 // update precomputation cache
227 update();
228
229 // Return value
230 return m_theta_min.value();
231}
232
233
234/***********************************************************************//**
235 * @brief Return maximum model radius (in radians)
236 *
237 * @return Maximum model radius (in radians).
238 ***************************************************************************/
240{
241
242 // Update precomputation cache
243 update();
244
245 // Initialise maximum theta angle
246 double theta = 0.0;
247
248 // If Earth is within the significant radius, then theta_max must
249 // contain the entire profile (180deg) ...
251 theta = gammalib::pi;
252 }
253
254 // ... otherwise if the halo is far enough away (further than the mass
255 // radius) then we just need to deal with the angles within the sphere
256 // of the significant radius.
257 else {
258 theta = std::atan(m_mass_radius / m_halo_distance.value());
259 }
260
261 // Always chose the lesser of mass_radius theta and theta_max
263 if (theta > theta_max) {
264 theta = theta_max;
265 }
266
267 // Return maximum theta value
268 return theta;
269}
270
271
272/***********************************************************************//**
273 * @brief Read model from XML element
274 *
275 * @param[in] xml XML element.
276 *
277 * Reads the DMEinasto radial profile model information from an XML element.
278 * The XML element shall have the format
279 *
280 * <spatialModel type="DMEinastoProfile">
281 * <parameter name="RA" scale=.. value=.. min=.. max=.. free=../>
282 * <parameter name="DEC" scale=.. value=.. min=.. max=.. free=../>
283 * <parameter name="ScaleRadius" scale=.. value=.. min=.. max=.. free=../>
284 * <parameter name="ScaleDensity" scale=.. value=.. min=.. max=.. free=../>
285 * <parameter name="HaloDistance" scale=.. value=.. min=.. max=.. free=../>
286 * <parameter name="Alpha" scale=.. value=.. min=.. max=.. free=../>
287 * <parameter name="ThetaMin" scale=.. value=.. min=.. max=.. free=../>
288 * <parameter name="ThetaMax" scale=.. value=.. min=.. max=.. free=../>
289 * <parameter name="CoreRadius" scale=.. value=.. min=.. max=.. free=../>
290 * </spatialModel>
291 ***************************************************************************/
293{
294 // Verify number of model parameters
296
297 // Read DMEinasto location
299
300 // Read ScaleRadius parameter
301 const GXmlElement* par1 = gammalib::xml_get_par(G_READ, xml, "ScaleRadius");
302 m_scale_radius.read(*par1);
303
304 // Read ScaleDensity parameter
305 const GXmlElement* par2 = gammalib::xml_get_par(G_READ, xml, "ScaleDensity");
306 m_scale_density.read(*par2);
307
308 // Read HaloDistance parameter
309 const GXmlElement* par3 = gammalib::xml_get_par(G_READ, xml, "HaloDistance");
310 m_halo_distance.read(*par3);
311
312 // Read Alpha parameter
313 const GXmlElement* par4 = gammalib::xml_get_par(G_READ, xml, "Alpha");
314 m_alpha.read(*par4);
315
316 // Read ThetaMin parameter
317 const GXmlElement* par5 = gammalib::xml_get_par(G_READ, xml, "ThetaMin");
318 m_theta_min.read(*par5);
319
320 // Read ThetaMax parameter
321 const GXmlElement* par6 = gammalib::xml_get_par(G_READ, xml, "ThetaMax");
322 m_theta_max.read(*par6);
323
324 // Read CoreRadius parameter
325 const GXmlElement* par7 = gammalib::xml_get_par(G_READ, xml, "CoreRadius");
326 m_core_radius.read(*par7);
327
328 // Return
329 return;
330}
331
332
333/***********************************************************************//**
334 * @brief Write model into XML element
335 *
336 * @param[in] xml XML element into which model information is written.
337 *
338 * Writes the DMEinasto radial profile model information into an XML element.
339 * The XML element will have the format
340 *
341 * <spatialModel type="DMEinastoProfile">
342 * <parameter name="RA" scale=.. value=.. min=.. max=.. free=../>
343 * <parameter name="DEC" scale=.. value=.. min=.. max=.. free=../>
344 * <parameter name="ScaleRadius" scale=.. value=.. min=.. max=.. free=../>
345 * <parameter name="ScaleDensity" scale=.. value=.. min=.. max=.. free=../>
346 * <parameter name="HaloDistance" scale=.. value=.. min=.. max=.. free=../>
347 * <parameter name="Alpha" scale=.. value=.. min=.. max=.. free=../>
348 * <parameter name="ThetaMin" scale=.. value=.. min=.. max=.. free=../>
349 * <parameter name="ThetaMax" scale=.. value=.. min=.. max=.. free=../>
350 * <parameter name="CoreRadius" scale=.. value=.. min=.. max=.. free=../>
351 * </spatialModel>
352 ***************************************************************************/
354{
355 // Verify model type
357
358 // Write DMEinasto location
360
361 // Write ScaleRadius parameter
362 GXmlElement* par1 = gammalib::xml_need_par(G_WRITE, xml, "ScaleRadius");
363 m_scale_radius.write(*par1);
364
365 // Write ScaleDensity parameter
366 GXmlElement* par2 = gammalib::xml_need_par(G_WRITE, xml, "ScaleDensity");
367 m_scale_density.write(*par2);
368
369 // Write HaloDistance parameter
370 GXmlElement* par3 = gammalib::xml_need_par(G_WRITE, xml, "HaloDistance");
371 m_halo_distance.write(*par3);
372
373 // Write Alpha parameter
374 GXmlElement* par4 = gammalib::xml_need_par(G_WRITE, xml, "Alpha");
375 m_alpha.write(*par4);
376
377 // Write ThetaMin parameter
378 GXmlElement* par5 = gammalib::xml_need_par(G_WRITE, xml, "ThetaMin");
379 m_theta_min.write(*par5);
380
381 // Write ThetaMax parameter
382 GXmlElement* par6 = gammalib::xml_need_par(G_WRITE, xml, "ThetaMax");
383 m_theta_max.write(*par6);
384
385 // Write CoreRadius parameter
386 GXmlElement* par7 = gammalib::xml_need_par(G_WRITE, xml, "CoreRadius");
387 m_core_radius.write(*par7);
388
389 // Return
390 return;
391}
392
393
394/***********************************************************************//**
395 * @brief Print information
396 *
397 * @param[in] chatter Chattiness.
398 * @return String containing model information.
399 ***************************************************************************/
401{
402 // Initialise result string
403 std::string result;
404
405 // Continue only if chatter is not silent
406 if (chatter != SILENT) {
407
408 // Append header
409 result.append("=== GModelSpatialRadialProfileDMEinasto ===");
410
411 // Append parameters
412 result.append("\n"+gammalib::parformat("Number of parameters"));
413 result.append(gammalib::str(size()));
414 for (int i = 0; i < size(); ++i) {
415 result.append("\n"+m_pars[i]->print(chatter));
416 }
417
418 } // endif: chatter was not silent
419
420 // Return result
421 return result;
422}
423
424
425/*==========================================================================
426 = =
427 = Private methods =
428 = =
429 ==========================================================================*/
430
431/***********************************************************************//**
432 * @brief Initialise class members
433 ***************************************************************************/
435{
436 // Initialise model type
437 m_type = "DMEinastoProfile";
438
439 // Initialise scale radius
441 m_scale_radius.name("ScaleRadius");
442 m_scale_radius.unit("kpc");
443 m_scale_radius.value(21.5); // default to GC scale radius
444 m_scale_radius.min(1.0e-6); // arbitrarily chosen :/
448 m_scale_radius.has_grad(false); // Radial components never have gradients
449
450 // Initialise scale density
452 m_scale_density.name("ScaleDensity");
453 m_scale_density.unit("GeV/cm^3");
454 m_scale_density.value(0.2); // GeV/cm3, default to GC scale density
455 m_scale_density.min(1.0e-6);
459 m_scale_density.has_grad(false); // Radial components never have gradients
460
461 // Initialise halo distance
463 m_halo_distance.name("HaloDistance");
464 m_halo_distance.unit("kpc");
465 m_halo_distance.value(7.94); // default to GC halo distance
466 m_halo_distance.min(1.0e-6); // arbitrarily chosen
470 m_halo_distance.has_grad(false); // Radial components never have gradients
471
472 // Initialise alpha
473 m_alpha.clear();
474 m_alpha.name("Alpha");
475 m_alpha.unit("unitless");
476 m_alpha.value(0.17); // default to GC alpha
477 m_alpha.min(0.01); // arbitrarily chosen
478 m_alpha.max(10.0); // arbitrarily chosen
479 m_alpha.free();
480 m_alpha.scale(1.0);
481 m_alpha.gradient(0.0);
482 m_alpha.has_grad(false); // Radial components never have gradients
483
484 // Initialise theta max
486 m_theta_min.name("ThetaMin");
487 m_theta_min.unit("degrees");
488 m_theta_min.value(180.0); // can only go from halo center to opposite halo center
489 m_theta_min.min(1.0e-6); // arbitrarily chosen
490 m_theta_min.fix(); // should always be fixed!
491 m_theta_min.scale(1.0);
493 m_theta_min.has_grad(false); // Radial components never have gradients
494
495 // Initialise theta max
497 m_theta_max.name("ThetaMax");
498 m_theta_max.unit("degrees");
499 m_theta_max.value(1.0e-6); // can only go from halo center to opposite halo center
500 m_theta_max.min(1.0e-10); // arbitrarily chosen
501 m_theta_max.fix(); // should always be fixed!
502 m_theta_max.scale(1.0);
504 m_theta_max.has_grad(false); // Radial components never have gradients
505
506 // Initialise core radius
508 m_core_radius.name("CoreRadius");
509 m_core_radius.unit("kpc");
510 m_core_radius.value(0.5); // example: galactic center core
511 m_core_radius.min(0.0);
513 m_core_radius.scale(1.0);
515 m_core_radius.has_grad(false);
516
517 // Set parameter pointer(s)
518 m_pars.push_back(&m_scale_radius);
519 m_pars.push_back(&m_scale_density);
520 m_pars.push_back(&m_halo_distance);
521 m_pars.push_back(&m_alpha);
522 m_pars.push_back(&m_theta_min);
523 m_pars.push_back(&m_theta_max);
524 m_pars.push_back(&m_core_radius);
525
526 // Initialize precomputation cache. Note that zero values flag
527 // uninitialised, as a zero radius is not meaningful
530 m_mass_radius = 0.0;
532
533 // Return
534 return;
535}
536
537
538/***********************************************************************//**
539 * @brief Copy class members
540 *
541 * @param[in] model Radial DMEinasto model.
542 *
543 * Copies class members from another radial profile model.
544 ***************************************************************************/
546{
547 // Copy members. We do not have to push back the members on the parameter
548 // stack as this should have been done by init_members() that was called
549 // before.
550 m_type = model.m_type; // Needed to conserve model type
554 m_alpha = model.m_alpha;
555 m_theta_min = model.m_theta_min;
556 m_theta_max = model.m_theta_max;
558
559 // copy cache values
564
565 // Return
566 return;
567}
568
569
570/***********************************************************************//**
571 * @brief Delete class members
572 ***************************************************************************/
574{
575 // Return
576 return;
577}
578
579
580/***********************************************************************//**
581 * @brief Radial profile
582 *
583 * @param[in] theta Angular distance from DMEinasto centre (radians).
584 * @return Profile value.
585 ***************************************************************************/
587{
588 // Update precomputation cache
589 update();
590
591 // Initialize integral value
592 double value = 0.0;
593
594 // Set up integration limits
595 double los_min = m_halo_distance.value() - m_mass_radius;
596 double los_max = m_halo_distance.value() + m_mass_radius;
597
598 // handle case where observer is within halo mass radius
599 if (los_min < 0.0) {
600 los_min = 0.0;
601 }
602
603 // Set up integral
606 m_alpha.value(),
607 theta,
609 GIntegral integral(&integrand);
610 integral.max_iter(30);
611
612 // Set up integration boundaries. As there is usually an infinity at the
613 // halo center, this splits the integral at the m_halo_distance.
614 std::vector<double> bounds;
615 bounds.push_back(los_min);
616 bounds.push_back(los_max);
617 bounds.push_back(m_halo_distance.value());
618
619 // Compute value
620 value = integral.romberg(bounds);
621
622 // Multiply in the density^2
624
625 // Return value
626 return value;
627}
628
629
630/***********************************************************************//**
631 * @brief Kernel for halo density profile squared
632 *
633 * @param[in] los Distance from observer to point in space (meters)
634 * @return Halo density.
635 *
636 * Computes the value of an einasto halo density profile squared,
637 * at distance l from observer, at angle \f[\theta\f] from the halo center:
638 *
639 * \f[
640 * f(\theta, l) = E^{ -\frac{2}{\alpha} \left( g^{\alpha} - 1 \right) }
641 * \f]
642 *
643 * where
644 *
645 * \f[
646 * g = \frac{ \sqrt{l^2+d^2-2ldCos(\theta)} }{r_s}
647 * \f]
648 *
649 * This profile is detailed in:
650 * Springel et al, 2008
651 * "The Aquarius Project: the subhaloes of galactic haloes"
652 * Mon. Not. R. Astron. Soc. 391, 1685–1711
653 * http://mnras.oxfordjournals.org/content/391/4/1685
654 *
655 * which cites:
656 * J. Einasto, 1965
657 * "Kinematics and dynamics of stellar systems"
658 * Trudy Inst. Astrofiz. Alma-Ata 5, 87
659 ***************************************************************************/
661{
662 // Calculate the scale distance g, the ( distance from integration point
663 // to the halo center ) divided by ( the halo scale radius )
664
665 // First calculate the distance of the integration point from the halo
666 // center via the law of cosines
667 double g = los * los;
669 g -= 2.0 * los * m_halo_distance * std::cos(m_theta);
670 g = std::sqrt(g);
671
672 // If we have a core radius specified, all halo values inside this core
673 // radius should be the same as at the core radius itself.
674 if (g < m_core_radius) {
675 g = m_core_radius;
676 }
677
678 // Finish scaling the integration point by the halo's scale radius
679 g /= m_scale_radius;
680
681 // Calculate the halo density f at the scale distance g
682 double f = std::pow(g, m_alpha);
683 f -= 1.0;
684 f *= -2.0 / m_alpha;
685 f = std::exp(f);
686
687 // Squared, for annihilating DM, would just be f if it was decaying DM
688 f = f * f;
689
690 // Return function value
691 return f;
692}
693
694
695/***********************************************************************//**
696 * @brief Update precomputation cache
697 *
698 * Computes the m_mass_radius calculation, determining the radius around
699 * the halo that contains 99.99% of the mass. For an Einasto halo profile,
700 * this is just 10.0 * scale_radius .
701 ***************************************************************************/
703{
704 // Update if scale radius has changed
707
708 // Store last values
711
712 // Perform precomputations
713 m_mass_radius = 10.0 * scale_radius();
715
716 }
717
718 // Return
719 return;
720}
721
722
723/***********************************************************************//**
724 * @brief Calculate halo mass density
725 *
726 * @param[in] radius Distance from halo center (kpc).
727 * @return Halo mass density.
728 *
729 * Calculates the halo's mass density at a given radial distance from the
730 * halo center.
731 ***************************************************************************/
733{
734 // Set-up kernel
737 m_alpha.value(),
738 0.0,
740
741
742 // eval produces a unitless density^2, so we must take its square root
743 double density = std::sqrt(halo_shape.eval(m_halo_distance.value() + radius));
744
745 // Multiply in the missing scale density
746 density *= m_scale_density.value();
747
748 // Return halo mass density
749 return density;
750}
751
752
753/***********************************************************************//**
754 * @brief Calculate J-factor
755 *
756 * @param[in] angle from halo center (radians)
757 * @return J-factor.
758 *
759 * Calculates the halo's J-factor at an angle from the halo center.
760 ***************************************************************************/
762{
763 // Integration settings
764 const double minradian = 0.0;
765 const int npoints = 200;
766
767 // Initialize other variables
768 double jfactor = 0.0;
769 double dr = (angle - minradian) / npoints;
770
771 // Loop over different radii in the profile
772 for (int i = 0; i < npoints; ++i) {
773 double r = minradian + (i * dr);
774 jfactor += profile_value(r) * r * dr;
775 }
776
777 // J-factor = 2 * pi * Int[ profile(r) * r * dr , {r,minradian,angle} ]
779
780 // Return J-factor
781 return jfactor;
782}
#define G_WRITE
#define G_READ
Exception handler interface definition.
Mathematical function definitions.
const GModelSpatialRadialProfileDMEinasto g_radial_disk_seed
Dark Matter Einasto profile model class interface definition.
Spatial model registry class definition.
Gammalib tools definition.
GChatter
Definition GTypemaps.hpp:33
@ SILENT
Definition GTypemaps.hpp:34
double angle(const GVector &a, const GVector &b)
Computes angle between vectors.
Definition GVector.cpp:974
XML element node class interface definition.
GIntegral class interface definition.
Definition GIntegral.hpp:46
void max_iter(const int &iter)
Set maximum number of iterations.
double romberg(std::vector< double > bounds, const int &order=5)
Perform Romberg integration.
void write(GXmlElement &xml) const
Set or update parameter attributes in XML element.
void read(const GXmlElement &xml)
Extract parameter attributes from XML element.
double eval(const double &los)
Kernel for halo density profile squared.
double scale_density(void) const
Return scale density.
virtual void read(const GXmlElement &xml)
Read model from XML element.
virtual double profile_value(const double &theta) const
Radial profile.
GModelPar m_scale_radius
Scale radius of halo profile.
void update(void) const
Update precomputation cache.
GModelPar m_scale_density
Scale density of halo profile.
double scale_radius(void) const
Return scale radius.
virtual GModelSpatialRadialProfileDMEinasto * clone(void) const
Clone radial DMEinasto profile model.
virtual double theta_min(void) const
Return minimum model radius (in radians)
virtual void clear(void)
Clear radial DMEinasto profile model.
virtual void write(GXmlElement &xml) const
Write model into XML element.
GModelPar m_halo_distance
Distance from earth to halo center.
double jfactor(const double &angle) const
Calculate J-factor.
double mass_density(const double &radius) const
Calculate halo mass density.
virtual std::string print(const GChatter &chatter=NORMAL) const
Print information.
void copy_members(const GModelSpatialRadialProfileDMEinasto &model)
Copy class members.
virtual GModelSpatialRadialProfileDMEinasto & operator=(const GModelSpatialRadialProfileDMEinasto &model)
Assignment operator.
virtual double theta_max(void) const
Return maximum model radius (in radians)
virtual GModelSpatialRadialProfile & operator=(const GModelSpatialRadialProfile &model)
Assignment operator.
void init_members(void)
Initialise class members.
void free_members(void)
Delete class members.
void free_members(void)
Delete class members.
virtual void write(GXmlElement &xml) const
Write model into XML element.
virtual void read(const GXmlElement &xml)
Read model from XML element.
void init_members(void)
Initialise class members.
Interface definition for the spatial model registry class.
std::string m_type
Spatial model type.
std::string type(void) const
Return model type.
std::vector< GModelPar * > m_pars
Parameter pointers.
void init_members(void)
Initialise class members.
int size(void) const
Return number of parameters.
void free_members(void)
Delete class members.
void free(void)
Free a parameter.
const double & scale(void) const
Return parameter scale.
bool has_grad(void) const
Signal if parameter gradient is computed analytically.
const std::string & unit(void) const
Return parameter unit.
double max(void) const
Return parameter maximum boundary.
double min(void) const
Return parameter minimum boundary.
void fix(void)
Fix a parameter.
double gradient(void) const
Return parameter gradient.
void clear(void)
Clear parameter.
double value(void) const
Return parameter value.
const std::string & name(void) const
Return parameter name.
XML element node class.
std::string parformat(const std::string &s, const int &indent=0)
Convert string in parameter format.
Definition GTools.cpp:1143
std::string str(const unsigned short int &value)
Convert unsigned short integer value into string.
Definition GTools.cpp:489
const GXmlElement * xml_get_par(const std::string &origin, const GXmlElement &xml, const std::string &name)
Return pointer to parameter with given name in XML element.
Definition GTools.cpp:1689
const double pi
Definition GMath.hpp:35
GXmlElement * xml_need_par(const std::string &origin, GXmlElement &xml, const std::string &name)
Return pointer to parameter with given name in XML element.
Definition GTools.cpp:1637
const double deg2rad
Definition GMath.hpp:43
void xml_check_parnum(const std::string &origin, const GXmlElement &xml, const int &number)
Checks number of parameters.
Definition GTools.cpp:1777
const double twopi
Definition GMath.hpp:36
void xml_check_type(const std::string &origin, GXmlElement &xml, const std::string &type)
Checks the model type.
Definition GTools.cpp:1819