GammaLib  2.0.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
GFft.cpp
Go to the documentation of this file.
1 /***************************************************************************
2  * GFft.hpp - Fast Fourier transformation class *
3  * ----------------------------------------------------------------------- *
4  * copyright (C) 2016-2020 by Juergen Knoedlseder *
5  * ----------------------------------------------------------------------- *
6  * *
7  * This program is free software: you can redistribute it and/or modify *
8  * it under the terms of the GNU General Public License as published by *
9  * the Free Software Foundation, either version 3 of the License, or *
10  * (at your option) any later version. *
11  * *
12  * This program is distributed in the hope that it will be useful, *
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15  * GNU General Public License for more details. *
16  * *
17  * You should have received a copy of the GNU General Public License *
18  * along with this program. If not, see <http://www.gnu.org/licenses/>. *
19  * *
20  ***************************************************************************/
21 /**
22  * @file GFft.cpp
23  * @brief Fast Fourier transformation class implementation
24  * @author Juergen Knoedlseder
25  */
26 
27 /* __ Includes ___________________________________________________________ */
28 #ifdef HAVE_CONFIG_H
29 #include <config.h>
30 #endif
31 #include "GTools.hpp"
32 #include "GMath.hpp"
33 #include "GException.hpp"
34 #include "GFft.hpp"
35 #include "GNdarray.hpp"
36 
37 /* __ Method name definitions ____________________________________________ */
38 #define G_OP_ADD "GFft::operator+=(GFft&)"
39 #define G_OP_SUB "GFft::operator-=(GFft&)"
40 #define G_OP_MUL "GFft::operator*=(GFft&)"
41 #define G_OP_DIV "GFft::operator/=(GFft&)"
42 #define G_FORWARD "GFft::forward(GNdarray&)"
43 #define G_BACKWARD "GFft::backward()"
44 
45 
46 /*==========================================================================
47  = =
48  = Constructors/destructors =
49  = =
50  ==========================================================================*/
51 
52 /***********************************************************************//**
53  * @brief Void constructor
54  ***************************************************************************/
56 {
57  // Initialise class members
58  init_members();
59 
60  // Return
61  return;
62 }
63 
64 
65 /***********************************************************************//**
66  * @brief N-dimensional array constructor
67  *
68  * @param[in] array N-dimensional array.
69  *
70  * Constructs a Fast Fourier Transformation from a n-dimensional array.
71  ***************************************************************************/
72 GFft::GFft(const GNdarray& array)
73 {
74  // Initialise class members
75  init_members();
76 
77  // Perform foward transformation
78  forward(array);
79 
80  // Return
81  return;
82 }
83 
84 
85 /***********************************************************************//**
86  * @brief Copy constructor
87  *
88  * @param[in] fft Fast Fourier Transform.
89  ***************************************************************************/
90 GFft::GFft(const GFft& fft)
91 {
92  // Initialise class members
93  init_members();
94 
95  // Copy members
96  copy_members(fft);
97 
98  // Return
99  return;
100 }
101 
102 
103 /***********************************************************************//**
104  * @brief Destructor
105  ***************************************************************************/
107 {
108  // Free members
109  free_members();
110 
111  // Return
112  return;
113 }
114 
115 
116 /*==========================================================================
117  = =
118  = Operators =
119  = =
120  ==========================================================================*/
121 
122 /***********************************************************************//**
123  * @brief Assignment operator
124  *
125  * @param[in] fft Fast Fourier Transform.
126  * @return Fast Fourier Transform.
127  ***************************************************************************/
129 {
130  // Execute only if object is not identical
131  if (this != &fft) {
132 
133  // Free members
134  free_members();
135 
136  // Initialise private members
137  init_members();
138 
139  // Copy members
140  copy_members(fft);
141 
142  } // endif: object was not identical
143 
144  // Return this object
145  return *this;
146 }
147 
148 
149 /***********************************************************************//**
150  * @brief Unary addition operator
151  *
152  * @param[in] fft Fast Fourier Transform.
153  * @return Fast Fourier Transform.
154  *
155  * Adds a Fast Fourier Transform to another Fast Fourier Transform. The
156  * method requires that both FFTs have the same dimension.
157  ***************************************************************************/
159 {
160  // Throw an exception if the FFTs have not the same shape
162 
163  // Add elements
164  for (int i = 0; i < m_size; ++i) {
165  *(m_data+i) += *(fft.m_data+i);
166  }
167 
168  // Return Fast Fourier Transform
169  return *this;
170 }
171 
172 
173 /***********************************************************************//**
174  * @brief Unary subtraction operator
175  *
176  * @param[in] fft Fast Fourier transform.
177  * @return Fast Fourier transform.
178  *
179  * Subtracts a Fast Fourier Transform from another Fast Fourier Transform.
180  * The method requires that both FFTs have the same dimension.
181  ***************************************************************************/
183 {
184  // Throw an exception if the FFTs have not the same shape
186 
187  // Subtract elements
188  for (int i = 0; i < m_size; ++i) {
189  *(m_data+i) -= *(fft.m_data+i);
190  }
191 
192  // Return Fast Fourier Transform
193  return *this;
194 }
195 
196 
197 /***********************************************************************//**
198  * @brief Unary multiplication operator
199  *
200  * @param[in] fft Fast Fourier transform.
201  * @return Fast Fourier transform.
202  *
203  * Multiplies a Fast Fourier Transform to another Fast Fourier Transform.
204  * The method requires that both FFTs have the same dimension.
205  ***************************************************************************/
207 {
208  // Throw an exception if the FFTs have not the same shape
210 
211  // Multiply elements
212  for (int i = 0; i < m_size; ++i) {
213  *(m_data+i) *= *(fft.m_data+i);
214  }
215 
216  // Return Fast Fourier Transform
217  return *this;
218 }
219 
220 
221 /***********************************************************************//**
222  * @brief Unary division operator
223  *
224  * @param[in] fft Fast Fourier transform.
225  * @return Fast Fourier transform.
226  *
227  * Divides a Fast Fourier Transform by another Fast Fourier Transform.
228  * The method requires that both FFTs have the same dimension.
229  ***************************************************************************/
231 {
232  // Throw an exception if the FFTs have not the same shape
234 
235  // Divide elements
236  for (int i = 0; i < m_size; ++i) {
237  *(m_data+i) /= *(fft.m_data+i);
238  }
239 
240  // Return Fast Fourier Transform
241  return *this;
242 }
243 
244 
245 /***********************************************************************//**
246  * @brief Unary minus operator
247  *
248  * @return Fast Fourier transformation.
249  *
250  * Negates all elements of the Fast Fourier Transformation.
251  ***************************************************************************/
253 {
254  // Copy FFT
255  GFft fft = *this;
256 
257  // Negate all elements
258  for (int i = 0; i < fft.size(); ++i) {
259  fft(i) = -fft(i);
260  }
261 
262  // Return FFT
263  return fft;
264 }
265 
266 
267 /*==========================================================================
268  = =
269  = Public methods =
270  = =
271  ==========================================================================*/
272 
273 /***********************************************************************//**
274  * @brief Clear Fast Fourier Transform
275  ***************************************************************************/
276 void GFft::clear(void)
277 {
278  // Free members
279  free_members();
280 
281  // Initialise private members
282  init_members();
283 
284  // Return
285  return;
286 }
287 
288 
289 /***********************************************************************//**
290  * @brief Clone Fast Fourier Transform
291  *
292  * @return Pointer to deep copy of Fast Fourier Transform.
293  ***************************************************************************/
294 GFft* GFft::clone(void) const
295 {
296  // Clone FFT
297  return new GFft(*this);
298 }
299 
300 
301 /***********************************************************************//**
302  * @brief Forward Fast Fourier Transform
303  *
304  * @param[in] array N-dimensional array.
305  *
306  * GException::feature_not_implemented
307  * Array dimension is not supported.
308  *
309  * Performs discret Fast Fourier forward transformation for 1- and
310  * 2-dimensional arrays.
311  *
312  * For one dimensional arrays of length \f$N\f$ the transformation is given
313  * by
314  *
315  * \f[
316  * X_k = \sum_{n=0}^{N-1} z_n e^{-i 2 \pi \frac{k n}{N}}
317  * \f]
318  *
319  * and for two dimensional arrays of length \f$ M \times N\f$ the
320  * transformation is given by
321  *
322  * \f[
323  * X_{k,l} = \sum_{n=0}^{N-1} \left(
324  * \sum_{m=0}^{M-1} z_{m,n} e^{-i 2 \pi \frac{m k}{M}} \right)
325  * e^{-i 2 \pi \frac{n l}{N}}
326  * \f]
327  ***************************************************************************/
328 void GFft::forward(const GNdarray& array)
329 {
330  // Set data
331  set_data(array);
332 
333  // Continue only if there are elements in the data member
334  if (m_size > 0) {
335 
336  // Case A: array is 1-dimensional
337  if (array.dim() == 1) {
338  transform(m_data, 1, m_shape[0], m_wavetable[0], true);
339  }
340 
341  // Case B: array is 2-dimensional
342  else if (array.dim() == 2) {
343 
344  // Loop over rows
345  for (int row = 0; row < m_shape[1]; ++row) {
346  transform(m_data + row*m_strides[1], m_strides[0], m_shape[0],
347  m_wavetable[0], true);
348  }
349 
350  // Loop over columns
351  for (int col = 0; col < m_shape[0]; ++col) {
352  transform(m_data + col*m_strides[0], m_strides[1], m_shape[1],
353  m_wavetable[1], true);
354  }
355 
356  }
357 
358  // ... otherwise throw an exception
359  else {
360  std::string msg = "Fast Fourier Transformation for "+
361  gammalib::str(array.dim())+"-dimensional array "
362  "not implemented.";
364  }
365 
366  } // endif: there were elements in the FFT data member
367 
368  // Return
369  return;
370 }
371 
372 
373 /***********************************************************************//**
374  * @brief Backward Fast Fourier Transform
375  *
376  * @return N-dimensional array.
377  *
378  * GException::feature_not_implemented
379  * Array dimension is not supported.
380  *
381  * Performs the inverse (or backward) discret Fast Fourier forward
382  * transformation for 1- and 2-dimensional arrays.
383  *
384  * For one dimensional arrays of length \f$N\f$ the transformation is given
385  * by
386  *
387  * \f[
388  * z_k = \frac{1}{N} \sum_{n=0}^{N-1} X_n e^{i 2 \pi \frac{k n}{N}}
389  * \f]
390  *
391  * and for two dimensional arrays of length \f$ M \times N\f$ the
392  * transformation is given by
393  *
394  * \f[
395  * z_{k,l} = \frac{1}{N} \sum_{n=0}^{N-1} \left(
396  * \frac{1}{M} \sum_{m=0}^{M-1} X_{m,n}
397  * e^{i 2 \pi \frac{m k}{M}} \right)
398  * e^{i 2 \pi \frac{n l}{N}}
399  * \f]
400  ***************************************************************************/
402 {
403  // Initialise n-dimensional array
404  GNdarray array(shape());
405 
406  // Continue only if there are elements in the array
407  if (m_size > 0) {
408 
409  // Create copy of complex array
410  std::complex<double>* data = new std::complex<double>[m_size];
411  for (int i = 0; i < m_size; ++i) {
412  *(data+i) = *(m_data+i);
413  }
414 
415  // Case A: array is 1-dimensional
416  if (array.dim() == 1) {
417 
418  // Perform backward transformation (circumvent const correctness)
419  const_cast<GFft*>(this)->transform(data, 1, m_shape[0], m_wavetable[0], false);
420 
421  // Get normalisation factor
422  const double norm = 1.0 / double(m_shape[0]);
423 
424  // Extract 1-dimensional array and normalise with 1/n
425  for (int i = 0; i < m_size; ++i) {
426  array(i) = (data+i)->real() * norm;
427  }
428 
429  }
430 
431  // Case B: array is 2-dimensional
432  else if (array.dim() == 2) {
433 
434  // Loop over rows
435  for (int row = 0; row < m_shape[1]; ++row) {
436  const_cast<GFft*>(this)->transform(data + row*m_strides[1], m_strides[0], m_shape[0],
437  m_wavetable[0], false);
438  }
439 
440  // Loop over columns
441  for (int col = 0; col < m_shape[0]; ++col) {
442  const_cast<GFft*>(this)->transform(data + col*m_strides[0], m_strides[1], m_shape[1],
443  m_wavetable[1], false);
444  }
445 
446  // Get normalisation factor
447  const double norm = 1.0 / double(m_shape[0]*m_shape[1]);
448 
449  // Extract 2-dimensional array and normalise with 1/(n*m)
450  for (int i = 0; i < m_size; ++i) {
451  array(i) = (data+i)->real() * norm;
452  }
453 
454  }
455 
456  // ... otherwise throw an exception
457  else {
458 
459  // Delete copy of complex array
460  delete [] data;
461 
462  // Throw exception
463  std::string msg = "Fast Fourier Transformation for "+
464  gammalib::str(array.dim())+"-dimensional array "
465  "not implemented.";
467  }
468 
469  // Delete copy of complex array
470  delete [] data;
471 
472  } // endif: there were elements in the array
473 
474  // Return N-dimensional array
475  return array;
476 }
477 
478 
479 /***********************************************************************//**
480  * @brief Print Fast Fourier Transform information
481  *
482  * @param[in] chatter Chattiness.
483  * @return String containing Fast Fourier Transform information.
484  ***************************************************************************/
485 std::string GFft::print(const GChatter& chatter) const
486 {
487  // Initialise result string
488  std::string result;
489 
490  // Continue only if chatter is not silent
491  if (chatter != SILENT) {
492 
493  // Append header
494  result.append("=== GFft ===");
495 
496  // Append array information
497  result.append("\n"+gammalib::parformat("Dimension"));
498  result.append(gammalib::str(dim()));
499  result.append("\n"+gammalib::parformat("Shape"));
500  result.append("(");
501  for (int i = 0; i < dim(); ++i) {
502  if (i > 0) {
503  result.append(",");
504  }
505  result.append(gammalib::str(m_shape[i]));
506  }
507  result.append(")");
508  result.append("\n"+gammalib::parformat("Size"));
509  result.append(gammalib::str(m_size));
510 
511  // VERBOSE: Put all FFT elements in string
512  if (chatter >= VERBOSE) {
513  result.append("\n"+gammalib::parformat("Elements"));
514  for (int i = 0; i < size(); ++i) {
515  if (i > 0) {
516  result.append(",");
517  }
518  result.append(gammalib::str((*this)(i)));
519  }
520  result.append(")");
521  }
522 
523  } // endif: chatter was not silent
524 
525  // Return result
526  return result;
527 }
528 
529 
530 /*==========================================================================
531  = =
532  = Private methods =
533  = =
534  ==========================================================================*/
535 
536 /***********************************************************************//**
537  * @brief Initialise class members
538  ***************************************************************************/
540 {
541  // Initialise members
542  m_size = 0;
543  m_data = NULL;
544  m_shape.clear();
545  m_strides.clear();
546  m_wavetable.clear();
547 
548  // Return
549  return;
550 }
551 
552 
553 /***********************************************************************//**
554  * @brief Copy class members
555  *
556  * @param[in] fft Fast Fourier Transform.
557  ***************************************************************************/
558 void GFft::copy_members(const GFft& fft)
559 {
560  // Copy members
561  m_size = fft.m_size;
562  m_shape = fft.m_shape;
563  m_strides = fft.m_strides;
564  m_wavetable = fft.m_wavetable;
565 
566  // Copy data
567  if (m_size > 0) {
568  m_data = new std::complex<double>[m_size];
569  for (int i = 0; i < m_size; ++i) {
570  *(m_data+i) = *(fft.m_data+i);
571  }
572  }
573 
574  // Return
575  return;
576 }
577 
578 
579 /***********************************************************************//**
580  * @brief Delete class members
581  ***************************************************************************/
583 {
584  // Delete data
585  if (m_data != NULL) {
586  delete [] m_data;
587  }
588 
589  // Reset size and pointer
590  m_size = 0;
591  m_data = NULL;
592 
593  // Return
594  return;
595 }
596 
597 
598 /***********************************************************************//**
599  * @brief Set data from n-dimensional array
600  *
601  * @param[in] array N-dimensional array
602  ***************************************************************************/
603 void GFft::set_data(const GNdarray& array)
604 {
605  // Clear information
606  free_members();
607  init_members();
608 
609  // Continue only if there are elements in the array
610  if (array.size() > 0) {
611 
612  // Set size of array
613  m_size = array.size();
614 
615  // Allocate data and initialise data to zero
616  m_data = new std::complex<double>[m_size];
617 
618  // Set real part of data from n-dimensional array
619  for (int i = 0; i < m_size; ++i) {
620  *(m_data+i) = std::complex<double>(array(i), 0.0);
621  }
622 
623  // Save shape and strides
624  m_shape = array.shape();
625  m_strides = array.strides();
626 
627  // Set trigonometric coefficients
628  for (int i = 0; i < m_shape.size(); ++i) {
629  GFftWavetable wavetable(m_shape[i]);
630  m_wavetable.push_back(wavetable);
631  }
632 
633  } // endif: there were elements in the array
634 
635  // Return
636  return;
637 }
638 
639 
640 /***********************************************************************//**
641  * @brief Check if FFT has the same shape
642  *
643  * @param[in] fft Fast Fourier Transform.
644  * @return True if the FFT has the same shape.
645  ***************************************************************************/
646 bool GFft::has_same_shape(const GFft& fft) const
647 {
648  // Check if the array has the same dimension
649  bool identity = m_shape.size() == fft.m_shape.size();
650 
651  // Check if the shape is identical. Break as soon as one shape value
652  // differs.
653  if (identity) {
654  for (int i = 0; i < m_shape.size(); ++i) {
655  if (m_shape[i] != fft.m_shape[i]) {
656  identity = false;
657  break;
658  }
659  }
660  }
661 
662  // Return result
663  return identity;
664 }
665 
666 
667 /***********************************************************************//**
668  * @brief Throw exception if FFT shapes differ
669  *
670  * @param[in] method Method that throws exception.
671  * @param[in] fft Fast Fourier Transform.
672  *
673  * @exception GException::invalid_argument
674  * FFT shapes differ.
675  ***************************************************************************/
676 void GFft::require_same_shape(const std::string& method,
677  const GFft& fft) const
678 {
679  // If the shape differs then throw an exception
680  if (!has_same_shape(fft)) {
681 
682  // Compose exception message
683  std::string msg = "Incompatible FFT dimensions (";
684  for (int i = 0; i < m_shape.size(); ++i) {
685  if (i > 0) {
686  msg += ", ";
687  }
688  msg += gammalib::str(m_shape[i]);
689  }
690  msg += ") <=> (";
691  for (int i = 0; i < fft.m_shape.size(); ++i) {
692  if (i > 0) {
693  msg += ", ";
694  }
695  msg += gammalib::str(fft.m_shape[i]);
696  }
697  msg += ").";
698 
699  // Throw exception
700  throw GException::invalid_argument(method, msg);
701 
702  } // endif: array shapes differed
703 
704  // Return
705  return;
706 }
707 
708 
709 /***********************************************************************//**
710  * @brief Perform Fast Fourier Transform
711  *
712  * @param[in] data Pointer to complex array to be transformed.
713  * @param[in] stride Step size when traversing complex array.
714  * @param[in] n Number of elements in complex array.
715  * @param[in] wavetable Trigonometric coefficients.
716  * @param[in] forward Forward transform if true, otherwise backward transform.
717  ***************************************************************************/
718 void GFft::transform(std::complex<double>* data,
719  const int& stride,
720  const int& n,
721  const GFftWavetable& wavetable,
722  const bool& forward)
723 {
724  // Allocate scratch space and initialize to zero
725  std::complex<double>* scratch = new std::complex<double>[n];
726  std::complex<double> zero(0.0, 0.0);
727  for (int i = 0; i < n; ++i) {
728  *(scratch+i) = zero;
729  }
730 
731  // Initialise transformation state
732  int state = 0;
733 
734  // Initialise factorisation product
735  int product = 1;
736 
737  // Set sign
738  int sign = (forward) ? -1 : +1;
739 
740  // Loop over all factors
741  for (int i = 0; i < wavetable.factors(); ++i) {
742 
743  // Get factorisation factor and start index
744  int factor = wavetable.factor(i);
745  int index = wavetable.index(i);
746 
747  // Update factorisation product
748  product *= factor;
749 
750  // Set state dependent stuff
751  std::complex<double>* in;
752  std::complex<double>* out;
753  int istride;
754  int ostride;
755  if (state == 0) {
756  in = data;
757  istride = stride;
758  out = scratch;
759  ostride = 1;
760  state = 1;
761  }
762  else {
763  in = scratch;
764  istride = 1;
765  out = data;
766  ostride = stride;
767  state = 0;
768  }
769 
770  // Call factor dependent method
771  if (factor == 2) {
772  factor2(in, istride, out, ostride, wavetable, sign, product, n, index);
773  }
774  else if (factor == 3) {
775  factor3(in, istride, out, ostride, wavetable, sign, product, n, index);
776  }
777  else if (factor == 4) {
778  factor4(in, istride, out, ostride, wavetable, sign, product, n, index);
779  }
780  else if (factor == 5) {
781  factor5(in, istride, out, ostride, wavetable, sign, product, n, index);
782  }
783  else if (factor == 6) {
784  factor6(in, istride, out, ostride, wavetable, sign, product, n, index);
785  }
786  else if (factor == 7) {
787  factor7(in, istride, out, ostride, wavetable, sign, product, n, index);
788  }
789  else {
790  factorn(in, istride, out, ostride, wavetable, sign, factor, product, n, index);
791  }
792 
793  } // endfor: looped over all factors
794 
795  // In case the loop was exited in state 1 the results are in the scratch
796  // array and we need to copy the results back from the scratch array to
797  // the data array
798  if (state == 1) {
799  for (int i = 0; i < n; ++i) {
800  *(data+stride*i) = *(scratch+i);
801  }
802  }
803 
804  // Free scratch space
805  delete [] scratch;
806 
807  // Return
808  return;
809 }
810 
811 
812 /***********************************************************************//**
813  * @brief Compute FFT for factor 2
814  *
815  * @param[in] in Pointer to input array.
816  * @param[in] istride Step size when traversing input array.
817  * @param[in] out Pointer to output array.
818  * @param[in] ostride Step size when traversing output array.
819  * @param[in] wavetable Trigonometric coefficients.
820  * @param[in] sign Forward (-1) or backward (+1).
821  * @param[in] product ...
822  * @param[in] n Logical array length.
823  * @param[in] index Start index of trigonometric coefficients.
824  ***************************************************************************/
825 void GFft::factor2(const std::complex<double>* in,
826  const int& istride,
827  std::complex<double>* out,
828  const int& ostride,
829  const GFftWavetable& wavetable,
830  const int& sign,
831  const int& product,
832  const int& n,
833  const int& index)
834 {
835  // Compute ...
836  const int factor = 2;
837  const int m = n / factor;
838  const int q = n / product;
839  const int p_1 = product / factor;
840  const int jump = (factor - 1) * p_1;
841 
842  // Loop over ...
843  for (int k = 0, i = 0, j = 0; k < q; ++k, j += jump) {
844 
845  // Extract coefficients from wavetable
846  std::vector<std::complex<double> > w = get_w(wavetable, index, k, q, 1, sign);
847 
848  // Compute x = W(2) z
849  for (int k1 = 0; k1 < p_1; ++k1, ++i, ++j) {
850 
851  // Get z
852  const std::complex<double> z0 = *(in+istride*i);
853  const std::complex<double> z1 = *(in+istride*(i+m));
854 
855  // Compute x
856  const std::complex<double> x0 = z0 + z1;
857  const std::complex<double> x1 = z0 - z1;
858 
859  // out = w * x
860  *(out+ostride*j) = x0;
861  *(out+ostride*(j+p_1)) = w[0] * x1;
862 
863  } // endfor: k1
864 
865  } // endfor: k
866 
867  // Return
868  return;
869 }
870 
871 
872 /***********************************************************************//**
873  * @brief Compute FFT for factor 3
874  *
875  * @param[in] in Pointer to input array.
876  * @param[in] istride Step size when traversing input array.
877  * @param[in] out Pointer to output array.
878  * @param[in] ostride Step size when traversing output array.
879  * @param[in] wavetable Trigonometric coefficients.
880  * @param[in] sign Forward (-1) or backward (+1).
881  * @param[in] product ...
882  * @param[in] n Logical array length.
883  * @param[in] index Start index of trigonometric coefficients.
884  ***************************************************************************/
885 void GFft::factor3(const std::complex<double>* in,
886  const int& istride,
887  std::complex<double>* out,
888  const int& ostride,
889  const GFftWavetable& wavetable,
890  const int& sign,
891  const int& product,
892  const int& n,
893  const int& index)
894 {
895  // Compute ...
896  const int factor = 3;
897  const int m = n / factor;
898  const int q = n / product;
899  const int p_1 = product / factor;
900  const int jump = (factor - 1) * p_1;
901 
902 
903  // Precompute some factors
904  const double tau = std::sqrt(3.0) / 2.0;
905 
906  // Loop over ...
907  for (int k = 0, i = 0, j = 0; k < q; ++k, j += jump) {
908 
909  // Extract coefficients from wavetable
910  std::vector<std::complex<double> > w = get_w(wavetable, index, k, q, 2, sign);
911 
912  // Compute x = W(3) z
913  for (int k1 = 0; k1 < p_1; ++k1, ++i, ++j) {
914 
915  // Get z
916  const std::complex<double> z0 = *(in+istride*i);
917  const std::complex<double> z1 = *(in+istride*(i+m));
918  const std::complex<double> z2 = *(in+istride*(i+2*m));
919 
920  // Compute t
921  const std::complex<double> t1 = z1 + z2;
922  const std::complex<double> t2 = z0 - t1/2.0;
923  const std::complex<double> t3 = double((int)sign) * tau * (z1 - z2);
924 
925  // Compute x
926  const std::complex<double> x0 = z0 + t1;
927  const std::complex<double> x1 = t2 + timesi(t3);
928  const std::complex<double> x2 = t2 - timesi(t3);
929 
930  // out = w * x
931  *(out+ostride*j) = x0;
932  *(out+ostride*(j+p_1)) = w[0] * x1;
933  *(out+ostride*(j+2*p_1)) = w[1] * x2;
934 
935  } // endfor: k1
936 
937  } // endfor: k
938 
939  // Return
940  return;
941 }
942 
943 
944 /***********************************************************************//**
945  * @brief Compute FFT for factor 4
946  *
947  * @param[in] in Pointer to input array.
948  * @param[in] istride Step size when traversing input array.
949  * @param[in] out Pointer to output array.
950  * @param[in] ostride Step size when traversing output array.
951  * @param[in] wavetable Trigonometric coefficients.
952  * @param[in] sign Forward (-1) or backward (+1).
953  * @param[in] product ...
954  * @param[in] n Logical array length.
955  * @param[in] index Start index of trigonometric coefficients.
956  ***************************************************************************/
957 void GFft::factor4(const std::complex<double>* in,
958  const int& istride,
959  std::complex<double>* out,
960  const int& ostride,
961  const GFftWavetable& wavetable,
962  const int& sign,
963  const int& product,
964  const int& n,
965  const int& index)
966 {
967  // Compute ...
968  const int factor = 4;
969  const int m = n / factor;
970  const int q = n / product;
971  const int p_1 = product / factor;
972  const int jump = (factor - 1) * p_1;
973 
974  // Loop over ...
975  for (int k = 0, i = 0, j = 0; k < q; ++k, j += jump) {
976 
977  // Extract coefficients from wavetable
978  std::vector<std::complex<double> > w = get_w(wavetable, index, k, q, 3, sign);
979 
980  // Compute x = W(4) z
981  for (int k1 = 0; k1 < p_1; ++k1, ++i, ++j) {
982 
983  // Get z
984  const std::complex<double> z0 = *(in+istride*i);
985  const std::complex<double> z1 = *(in+istride*(i+m));
986  const std::complex<double> z2 = *(in+istride*(i+2*m));
987  const std::complex<double> z3 = *(in+istride*(i+3*m));
988 
989  // Compute t
990  const std::complex<double> t1 = z0 + z2;
991  const std::complex<double> t2 = z1 + z3;
992  const std::complex<double> t3 = z0 - z2;
993  const std::complex<double> t4 = double((int)sign) * (z1 - z3);
994 
995  // Compute x
996  const std::complex<double> x0 = t1 + t2;
997  const std::complex<double> x1 = t3 + timesi(t4);
998  const std::complex<double> x2 = t1 - t2;
999  const std::complex<double> x3 = t3 - timesi(t4);
1000 
1001  // out = w * x
1002  *(out+ostride*j) = x0;
1003  *(out+ostride*(j+p_1)) = w[0] * x1;
1004  *(out+ostride*(j+2*p_1)) = w[1] * x2;
1005  *(out+ostride*(j+3*p_1)) = w[2] * x3;
1006 
1007  } // endfor: k1
1008 
1009  } // endfor: k
1010 
1011  // Return
1012  return;
1013 }
1014 
1015 
1016 /***********************************************************************//**
1017  * @brief Compute FFT for factor 5
1018  *
1019  * @param[in] in Pointer to input array.
1020  * @param[in] istride Step size when traversing input array.
1021  * @param[in] out Pointer to output array.
1022  * @param[in] ostride Step size when traversing output array.
1023  * @param[in] wavetable Trigonometric coefficients.
1024  * @param[in] sign Forward (-1) or backward (+1).
1025  * @param[in] product ...
1026  * @param[in] n Logical array length.
1027  * @param[in] index Start index of trigonometric coefficients.
1028  ***************************************************************************/
1029 void GFft::factor5(const std::complex<double>* in,
1030  const int& istride,
1031  std::complex<double>* out,
1032  const int& ostride,
1033  const GFftWavetable& wavetable,
1034  const int& sign,
1035  const int& product,
1036  const int& n,
1037  const int& index)
1038 {
1039  // Compute ...
1040  const int factor = 5;
1041  const int m = n / factor;
1042  const int q = n / product;
1043  const int p_1 = product / factor;
1044  const int jump = (factor - 1) * p_1;
1045 
1046  // Precompute some factors
1047  const double sin_2pi_by_5 = std::sin(gammalib::twopi / 5.0);
1048  const double sin_2pi_by_10 = std::sin(gammalib::twopi / 10.0);
1049  const double tau = std::sqrt(5.0) / 4.0;
1050 
1051  // Loop over ...
1052  for (int k = 0, i = 0, j = 0; k < q; ++k, j += jump) {
1053 
1054  // Extract coefficients from wavetable
1055  std::vector<std::complex<double> > w = get_w(wavetable, index, k, q, 4, sign);
1056 
1057  // Compute x = W(5) z
1058  for (int k1 = 0; k1 < p_1; ++k1, ++i, ++j) {
1059 
1060  // Get z
1061  const std::complex<double> z0 = *(in+istride*i);
1062  const std::complex<double> z1 = *(in+istride*(i+m));
1063  const std::complex<double> z2 = *(in+istride*(i+2*m));
1064  const std::complex<double> z3 = *(in+istride*(i+3*m));
1065  const std::complex<double> z4 = *(in+istride*(i+4*m));
1066 
1067  // Compute t
1068  const std::complex<double> t1 = z1 + z4;
1069  const std::complex<double> t2 = z2 + z3;
1070  const std::complex<double> t3 = z1 - z4;
1071  const std::complex<double> t4 = z2 - z3;
1072  const std::complex<double> t5 = t1 + t2;
1073  const std::complex<double> t6 = tau * (t1 - t2);
1074  const std::complex<double> t7 = z0 - t5/4.0;
1075  const std::complex<double> t8 = t7 + t6;
1076  const std::complex<double> t9 = t7 - t6;
1077  const std::complex<double> t10 = double((int)sign) *
1078  (sin_2pi_by_5*t3 + sin_2pi_by_10*t4);
1079  const std::complex<double> t11 = double((int)sign) *
1080  (sin_2pi_by_10*t3 - sin_2pi_by_5*t4);
1081 
1082  // Compute x
1083  const std::complex<double> x0 = z0 + t5;
1084  const std::complex<double> x1 = t8 + timesi(t10);
1085  const std::complex<double> x2 = t9 + timesi(t11);
1086  const std::complex<double> x3 = t9 - timesi(t11);
1087  const std::complex<double> x4 = t8 - timesi(t10);
1088 
1089  // Compute out = w * x
1090  *(out+ostride*j) = x0;
1091  *(out+ostride*(j+p_1)) = w[0] * x1;
1092  *(out+ostride*(j+2*p_1)) = w[1] * x2;
1093  *(out+ostride*(j+3*p_1)) = w[2] * x3;
1094  *(out+ostride*(j+4*p_1)) = w[3] * x4;
1095 
1096  } // endfor: k1
1097 
1098  } // endfor: k
1099 
1100  // Return
1101  return;
1102 }
1103 
1104 
1105 /***********************************************************************//**
1106  * @brief Compute FFT for factor 6
1107  *
1108  * @param[in] in Pointer to input array.
1109  * @param[in] istride Step size when traversing input array.
1110  * @param[in] out Pointer to output array.
1111  * @param[in] ostride Step size when traversing output array.
1112  * @param[in] wavetable Trigonometric coefficients.
1113  * @param[in] sign Forward (-1) or backward (+1).
1114  * @param[in] product ...
1115  * @param[in] n Logical array length.
1116  * @param[in] index Start index of trigonometric coefficients.
1117  ***************************************************************************/
1118 void GFft::factor6(const std::complex<double>* in,
1119  const int& istride,
1120  std::complex<double>* out,
1121  const int& ostride,
1122  const GFftWavetable& wavetable,
1123  const int& sign,
1124  const int& product,
1125  const int& n,
1126  const int& index)
1127 {
1128  // Compute ...
1129  const int factor = 6;
1130  const int m = n / factor;
1131  const int q = n / product;
1132  const int p_1 = product / factor;
1133  const int jump = (factor - 1) * p_1;
1134 
1135  // Precompute some factors
1136  const double tau = std::sqrt(3.0) / 2.0;
1137 
1138  // Loop over ...
1139  for (int k = 0, i = 0, j = 0; k < q; ++k, j += jump) {
1140 
1141  // Extract coefficients from wavetable
1142  std::vector<std::complex<double> > w = get_w(wavetable, index, k, q, 5, sign);
1143 
1144  // Compute x = W(6) z. W(6) is a combination of sums and differences of
1145  // W(3) acting on the even and odd elements of z
1146  for (int k1 = 0; k1 < p_1; ++k1, ++i, ++j) {
1147 
1148  // Get z
1149  const std::complex<double> z0 = *(in+istride*i);
1150  const std::complex<double> z1 = *(in+istride*(i+m));
1151  const std::complex<double> z2 = *(in+istride*(i+2*m));
1152  const std::complex<double> z3 = *(in+istride*(i+3*m));
1153  const std::complex<double> z4 = *(in+istride*(i+4*m));
1154  const std::complex<double> z5 = *(in+istride*(i+5*m));
1155 
1156  // Compute ta
1157  const std::complex<double> ta1 = z2 + z4;
1158  const std::complex<double> ta2 = z0 - ta1/2.0;
1159  const std::complex<double> ta3 = double((int)sign) * tau * (z2 - z4);
1160 
1161  // Compute a
1162  const std::complex<double> a0 = z0 + ta1;
1163  const std::complex<double> a1 = ta2 + timesi(ta3);
1164  const std::complex<double> a2 = ta2 - timesi(ta3);
1165 
1166  // Compute tb
1167  const std::complex<double> tb1 = z5 + z1;
1168  const std::complex<double> tb2 = z3 - tb1/2.0;
1169  const std::complex<double> tb3 = double((int)sign) * tau * (z5 - z1);
1170 
1171  // Compute b
1172  const std::complex<double> b0 = z3 + tb1;
1173  const std::complex<double> b1 = tb2 + timesi(tb3);
1174  const std::complex<double> b2 = tb2 - timesi(tb3);
1175 
1176  // Compute x
1177  const std::complex<double> x0 = a0 + b0;
1178  const std::complex<double> x1 = a1 - b1;
1179  const std::complex<double> x2 = a2 + b2;
1180  const std::complex<double> x3 = a0 - b0;
1181  const std::complex<double> x4 = a1 + b1;
1182  const std::complex<double> x5 = a2 - b2;
1183 
1184  // Compute out = w * x
1185  *(out+ostride*j) = x0;
1186  *(out+ostride*(j+p_1)) = w[0] * x1;
1187  *(out+ostride*(j+2*p_1)) = w[1] * x2;
1188  *(out+ostride*(j+3*p_1)) = w[2] * x3;
1189  *(out+ostride*(j+4*p_1)) = w[3] * x4;
1190  *(out+ostride*(j+5*p_1)) = w[4] * x5;
1191 
1192  } // endfor: k1
1193 
1194  } // endfor: k
1195 
1196  // Return
1197  return;
1198 }
1199 
1200 
1201 /***********************************************************************//**
1202  * @brief Compute FFT for factor 7
1203  *
1204  * @param[in] in Pointer to input array.
1205  * @param[in] istride Step size when traversing input array.
1206  * @param[in] out Pointer to output array.
1207  * @param[in] ostride Step size when traversing output array.
1208  * @param[in] wavetable Trigonometric coefficients.
1209  * @param[in] sign Forward (-1) or backward (+1).
1210  * @param[in] product ...
1211  * @param[in] n Logical array length.
1212  * @param[in] index Start index of trigonometric coefficients.
1213  ***************************************************************************/
1214 void GFft::factor7(const std::complex<double>* in,
1215  const int& istride,
1216  std::complex<double>* out,
1217  const int& ostride,
1218  const GFftWavetable& wavetable,
1219  const int& sign,
1220  const int& product,
1221  const int& n,
1222  const int& index)
1223 {
1224  // Compute ...
1225  const int factor = 7;
1226  const int m = n / factor;
1227  const int q = n / product;
1228  const int p_1 = product / factor;
1229  const int jump = (factor - 1) * p_1;
1230 
1231  // Precompute some factors
1232  static const double twopi7 = gammalib::twopi / 7.0;
1233  static const double c1 = std::cos(1.0 * twopi7);
1234  static const double c2 = std::cos(2.0 * twopi7);
1235  static const double c3 = std::cos(3.0 * twopi7);
1236  static const double s1 = std::sin(1.0 * twopi7);
1237  static const double s2 = std::sin(2.0 * twopi7);
1238  static const double s3 = std::sin(3.0 * twopi7);
1239  static const double tau1 = (c1 + c2 + c3) / 3.0 - 1.0;
1240  static const double tau2 = (2.0 * c1 - c2 - c3) / 3.0;
1241  static const double tau3 = (c1 - 2.0*c2 + c3) / 3.0;
1242  static const double tau4 = (c1 + c2 - 2.0 * c3) / 3.0;
1243  static const double tau5 = (s1 + s2 - s3) / 3.0;
1244  static const double tau6 = (2.0 * s1 - s2 + s3) / 3.0;
1245  static const double tau7 = (s1 - 2.0 * s2 - s3) / 3.0;
1246  static const double tau8 = (s1 + s2 + 2.0 * s3) / 3.0;
1247 
1248  // Loop over ...
1249  for (int k = 0, i = 0, j = 0; k < q; ++k, j += jump) {
1250 
1251  // Extract coefficients from wavetable
1252  std::vector<std::complex<double> > w = get_w(wavetable, index, k, q, 6, sign);
1253 
1254  // Compute x = W(7) z
1255  for (int k1 = 0; k1 < p_1; ++k1, ++i, ++j) {
1256 
1257  // Get z
1258  const std::complex<double> z0 = *(in+istride*i);
1259  const std::complex<double> z1 = *(in+istride*(i+m));
1260  const std::complex<double> z2 = *(in+istride*(i+2*m));
1261  const std::complex<double> z3 = *(in+istride*(i+3*m));
1262  const std::complex<double> z4 = *(in+istride*(i+4*m));
1263  const std::complex<double> z5 = *(in+istride*(i+5*m));
1264  const std::complex<double> z6 = *(in+istride*(i+6*m));
1265 
1266  // Compute t
1267  const std::complex<double> t0 = z1 + z6;
1268  const std::complex<double> t1 = z1 - z6;
1269  const std::complex<double> t2 = z2 + z5;
1270  const std::complex<double> t3 = z2 - z5;
1271  const std::complex<double> t4 = z4 + z3;
1272  const std::complex<double> t5 = z4 - z3;
1273  const std::complex<double> t6 = t2 + t0;
1274  const std::complex<double> t7 = t5 + t3;
1275 
1276  // Compute b
1277  const std::complex<double> b0 = z0 + t6 + t4;
1278  const std::complex<double> b1 = tau1 * (t6 + t4);
1279  const std::complex<double> b2 = tau2 * (t0 - t4);
1280  const std::complex<double> b3 = tau3 * (t4 - t2);
1281  const std::complex<double> b4 = tau4 * (t2 - t0);
1282  const std::complex<double> b5 = double(-(int)sign) * tau5 * (t7 + t1);
1283  const std::complex<double> b6 = double(-(int)sign) * tau6 * (t1 - t5);
1284  const std::complex<double> b7 = double(-(int)sign) * tau7 * (t5 - t3);
1285  const std::complex<double> b8 = double(-(int)sign) * tau8 * (t3 - t1);
1286 
1287  // Compute T
1288  const std::complex<double> T0 = b0 + b1;
1289  const std::complex<double> T1 = b2 + b3;
1290  const std::complex<double> T2 = b4 - b3;
1291  const std::complex<double> T3 = -b2 - b4;
1292  const std::complex<double> T4 = b6 + b7;
1293  const std::complex<double> T5 = b8 - b7;
1294  const std::complex<double> T6 = -b8 - b6;
1295  const std::complex<double> T7 = T0 + T1;
1296  const std::complex<double> T8 = T0 + T2;
1297  const std::complex<double> T9 = T0 + T3;
1298  const std::complex<double> T10 = T4 + b5;
1299  const std::complex<double> T11 = T5 + b5;
1300  const std::complex<double> T12 = T6 + b5;
1301 
1302  // Compute x
1303  const std::complex<double> x0 = b0;
1304  const std::complex<double> x1 = T7 - timesi(T10);
1305  const std::complex<double> x2 = T9 - timesi(T12);
1306  const std::complex<double> x3 = T8 + timesi(T11);
1307  const std::complex<double> x4 = T8 - timesi(T11);
1308  const std::complex<double> x5 = T9 + timesi(T12);
1309  const std::complex<double> x6 = T7 + timesi(T10);
1310 
1311  // Compute out = w * x
1312  *(out+ostride*j) = x0;
1313  *(out+ostride*(j+p_1)) = w[0] * x1;
1314  *(out+ostride*(j+2*p_1)) = w[1] * x2;
1315  *(out+ostride*(j+3*p_1)) = w[2] * x3;
1316  *(out+ostride*(j+4*p_1)) = w[3] * x4;
1317  *(out+ostride*(j+5*p_1)) = w[4] * x5;
1318  *(out+ostride*(j+6*p_1)) = w[5] * x6;
1319 
1320  } // endfor: k1
1321 
1322  } // endfor: k
1323 
1324  // Return
1325  return;
1326 }
1327 
1328 
1329 /***********************************************************************//**
1330  * @brief Compute FFT for arbitrary factor
1331  *
1332  * @param[in] in Pointer to input array.
1333  * @param[in] istride Step size when traversing input array.
1334  * @param[in] out Pointer to output array.
1335  * @param[in] ostride Step size when traversing output array.
1336  * @param[in] wavetable Trigonometric coefficients.
1337  * @param[in] sign Forward (-1) or backward (+1).
1338  * @param[in] factor Factor.
1339  * @param[in] product ...
1340  * @param[in] n Logical array length.
1341  * @param[in] index Start index of trigonometric coefficients.
1342  ***************************************************************************/
1343 void GFft::factorn(std::complex<double>* in,
1344  const int& istride,
1345  std::complex<double>* out,
1346  const int& ostride,
1347  const GFftWavetable& wavetable,
1348  const int& sign,
1349  const int& factor,
1350  const int& product,
1351  const int& n,
1352  const int& index)
1353 {
1354  // Compute ...
1355  const int m = n / factor;
1356  const int q = n / product;
1357  const int p_1 = product / factor;
1358  const int jump = (factor - 1) * p_1;
1359 
1360  // ...
1361  for (int i = 0; i < m; ++i) {
1362  *(out+ostride*i) = *(in+istride*i);
1363  }
1364 
1365  // ...
1366  for (int e = 1; e < (factor - 1) / 2 + 1; ++e) {
1367  for (int i = 0; i < m; ++i) {
1368  const int idx = i + e * m;
1369  const int idxc = i + (factor - e) * m;
1370  *(out+ostride*idx) = *(in+istride*idx) + *(in+istride*idxc);
1371  *(out+ostride*idxc) = *(in+istride*idx) - *(in+istride*idxc);
1372  }
1373  }
1374 
1375  // e = 0
1376  for (int i = 0; i < m; ++i) {
1377  *(in+istride*i) = *(out+ostride*i);
1378  }
1379  for (int e = 1; e < (factor - 1) / 2 + 1; ++e) {
1380  for (int i = 0; i < m; ++i) {
1381  const int idx = i + e * m;
1382  *(in+istride*i) += *(out+ostride*idx);
1383  }
1384  }
1385 
1386  // ...
1387  for (int e = 1; e < (factor-1)/2 + 1; ++e) {
1388 
1389  //
1390  int idx = e * q;
1391  const int idx_step = e * q;
1392 
1393  //
1394  double w_real, w_imag;
1395 
1396  //
1397  const int em = e * m;
1398  const int ecm = (factor - e) * m;
1399 
1400  // ...
1401  for (int i = 0; i < m; ++i) {
1402  *(in+istride*(i+em)) = *(out+ostride*i);
1403  *(in+istride*(i+ecm)) = *(out+ostride*i);
1404  }
1405 
1406  // ...
1407  for (int e1 = 1; e1 < (factor - 1) / 2 + 1; ++e1) {
1408 
1409  //
1410  if (idx == 0) {
1411  w_real = 1.0;
1412  w_imag = 0.0;
1413  }
1414  else {
1415 
1416  // Compute indices
1417  int twiddle = index + idx - 1;
1418 
1419  // Set trigonometric coefficients for forward transform
1420  if (sign == -1) {
1421  w_real = wavetable[twiddle].real();
1422  w_imag = wavetable[twiddle].imag();
1423  }
1424  // ... otherwise set trigonometric coefficients for backward
1425  // tranform: w -> conjugate(w)
1426  else {
1427  w_real = wavetable[twiddle].real();
1428  w_imag = -wavetable[twiddle].imag();
1429  }
1430  }
1431 
1432  // Loop over ...
1433  for (int i = 0; i < m; ++i) {
1434 
1435  //
1436  const double xp_real = (out+ostride*(i + e1 * m))->real();
1437  const double xp_imag = (out+ostride*(i + e1 * m))->imag();
1438  const double xm_real = (out+ostride*(i + (factor-e1)*m))->real();
1439  const double xm_imag = (out+ostride*(i + (factor-e1)*m))->imag();
1440 
1441  //
1442  const double ap = w_real * xp_real;
1443  const double am = w_imag * xm_imag;
1444 
1445  //
1446  double sum_real = ap - am;
1447  double sumc_real = ap + am;
1448 
1449  //
1450  const double bp = w_real * xp_imag;
1451  const double bm = w_imag * xm_real;
1452 
1453  //
1454  double sum_imag = bp + bm;
1455  double sumc_imag = bp - bm;
1456 
1457  //
1458  *(in+istride*(i+em)) = std::complex<double>((in+istride*(i+em))->real() + sum_real,
1459  (in+istride*(i+em))->imag() + sum_imag);
1460  *(in+istride*(i+ecm)) = std::complex<double>((in+istride*(i+ecm))->real() + sumc_real,
1461  (in+istride*(i+ecm))->imag() + sumc_imag);
1462 
1463 
1464  } // endfor: i
1465 
1466  // Increment
1467  idx += idx_step ;
1468  idx %= factor * q ;
1469 
1470  } // endfor: e1
1471 
1472  } // endfor: e
1473 
1474  // k = 0
1475  for (int k1 = 0; k1 < p_1; ++k1) {
1476  *(out+ostride*k1) = *(in+istride*k1);
1477  }
1478 
1479  // k > 0
1480  for (int e1 = 1; e1 < factor; ++e1) {
1481  for (int k1 = 0; k1 < p_1; ++k1) {
1482  *(out+ostride*(k1 + e1 * p_1)) = *(in+istride*(k1 + e1 * m));
1483  }
1484  }
1485 
1486  // e = 0
1487  for (int k = 1, i = p_1, j = product; k < q; ++k, j += jump) {
1488  for (int k1 = 0; k1 < p_1; ++k1, ++i, ++j) {
1489  *(out+ostride*j) = *(in+istride*i);
1490  }
1491  }
1492 
1493  // e > 0
1494  for (int k = 1, i = p_1, j = product; k < q; ++k, j += jump) {
1495 
1496  for (int k1 = 0; k1 < p_1; ++k1, ++i, ++j) {
1497 
1498  for (int e1 = 1; e1 < factor; ++e1) {
1499 
1500  // Get x
1501  std::complex<double> x = *(in+istride*(i + e1 * m));
1502 
1503  // Compute index
1504  int twiddle = index + (e1-1)*q + k-1;
1505 
1506  // Get w
1507  std::complex<double> w = (sign == -1)
1508  ? wavetable[twiddle]
1509  : std::conj(wavetable[twiddle]);
1510 
1511  // Compute out = w * x
1512  *(out+ostride*(j + e1 * p_1)) = w * x;
1513 
1514  } // endfor: e1
1515 
1516  } // endfor: k1
1517 
1518  } // endfor: k
1519 
1520  // Return
1521  return;
1522 }
1523 
1524 
1525 /***********************************************************************//**
1526  * @brief Extract coefficients from wavetable
1527  *
1528  * @param[in] index Start index of trigonometric coefficients.
1529  * @param[in] k ...
1530  * @param[in] q ...
1531  * @param[in] n Number of coefficients.
1532  * @param[in] sign Forward (-1) or backward (+1) transformation.
1533  * @param[in] wavetable Trigonometric coefficients.
1534  ***************************************************************************/
1535 std::vector<std::complex<double> > GFft::get_w(const GFftWavetable& wavetable,
1536  const int& index,
1537  const int& k,
1538  const int& q,
1539  const int& n,
1540  const int& sign) const
1541 {
1542  // Allocate w vectors
1543  std::vector<std::complex<double> > w(n);
1544 
1545  // Set trigonometric coefficients for k=0 since they are not stored in the
1546  // wavetable object
1547  if (k == 0) {
1548  w.assign(n, std::complex<double>(1.0, 0.0));
1549  }
1550 
1551  // ... otherwise use coefficients stored in wavetable
1552  else {
1553 
1554  // Compute indices
1555  int twiddle = index + k - 1;
1556 
1557  // If sign==-1 then set trigonometric coefficients for forward transform
1558  if (sign == -1) {
1559  for (int i = 0; i < n; ++i, twiddle += q) {
1560  w[i] = wavetable[twiddle];
1561  }
1562  }
1563 
1564  // ... otherwise set trigonometric coefficients for backward tranform
1565  // w -> conjugate(w)
1566  else {
1567  for (int i = 0; i < n; ++i, twiddle += q) {
1568  w[i] = std::conj(wavetable[twiddle]);
1569  }
1570  }
1571 
1572  } // endelse: k != 0
1573 
1574  // Return w vectors
1575  return w;
1576 }
std::vector< int > m_shape
Array dimensions.
Definition: GFft.hpp:182
void factor3(const std::complex< double > *in, const int &istride, std::complex< double > *out, const int &ostride, const GFftWavetable &wavetable, const int &sign, const int &product, const int &n, const int &index)
Compute FFT for factor 3.
Definition: GFft.cpp:885
void factorn(std::complex< double > *in, const int &istride, std::complex< double > *out, const int &ostride, const GFftWavetable &wavetable, const int &sign, const int &factor, const int &product, const int &n, const int &index)
Compute FFT for arbitrary factor.
Definition: GFft.cpp:1343
void set_data(const GNdarray &array)
Set data from n-dimensional array.
Definition: GFft.cpp:603
double norm(const GVector &vector)
Computes vector norm.
Definition: GVector.cpp:864
const std::vector< int > & strides(void) const
Return strides of array.
Definition: GNdarray.hpp:321
void forward(const GNdarray &array)
Forward Fast Fourier Transform.
Definition: GFft.cpp:328
GFft * clone(void) const
Clone Fast Fourier Transform.
Definition: GFft.cpp:294
std::string print(const GChatter &chatter=NORMAL) const
Print Fast Fourier Transform information.
Definition: GFft.cpp:485
std::complex< double > timesi(const std::complex< double > &value) const
Return complex value times i.
Definition: GFft.hpp:397
std::vector< std::complex< double > > get_w(const GFftWavetable &wavetable, const int &index, const int &k, const int &q, const int &n, const int &sign) const
Extract coefficients from wavetable.
Definition: GFft.cpp:1535
void clear(void)
Clear Fast Fourier Transform.
Definition: GFft.cpp:276
GVector cos(const GVector &vector)
Computes cosine of vector elements.
Definition: GVector.cpp:1190
std::complex< double > * m_data
Pointer on array data.
Definition: GFft.hpp:181
void factor5(const std::complex< double > *in, const int &istride, std::complex< double > *out, const int &ostride, const GFftWavetable &wavetable, const int &sign, const int &product, const int &n, const int &index)
Compute FFT for factor 5.
Definition: GFft.cpp:1029
#define G_BACKWARD
Definition: GFft.cpp:43
void init_members(void)
Initialise class members.
Definition: GFft.cpp:539
GFft & operator/=(const GFft &fft)
Unary division operator.
Definition: GFft.cpp:230
virtual ~GFft(void)
Destructor.
Definition: GFft.cpp:106
Lookup table class for Fast Fourier Transformation.
void transform(std::complex< double > *data, const int &stride, const int &n, const GFftWavetable &wavetable, const bool &forward=true)
Perform Fast Fourier Transform.
Definition: GFft.cpp:718
Gammalib tools definition.
const std::vector< int > & shape(void) const
Return shape of array.
Definition: GNdarray.hpp:307
int size(void) const
Return number of elements in array.
Definition: GFft.hpp:282
GNdarray backward(void) const
Backward Fast Fourier Transform.
Definition: GFft.cpp:401
int m_size
Size of data array.
Definition: GFft.hpp:180
int factor(const int &index) const
Return factorisation factor.
GFft & operator-=(const GFft &fft)
Unary subtraction operator.
Definition: GFft.cpp:182
bool has_same_shape(const GFft &fft) const
Check if FFT has the same shape.
Definition: GFft.cpp:646
void free_members(void)
Delete class members.
Definition: GFft.cpp:582
GFft & operator=(const GFft &fft)
Assignment operator.
Definition: GFft.cpp:128
GFft & operator+=(const GFft &fft)
Unary addition operator.
Definition: GFft.cpp:158
void copy_members(const GFft &fft)
Copy class members.
Definition: GFft.cpp:558
GFft(void)
Void constructor.
Definition: GFft.cpp:55
#define G_OP_DIV
Definition: GFft.cpp:41
std::vector< GFftWavetable > m_wavetable
Trigonometric coefficients.
Definition: GFft.hpp:184
#define G_OP_SUB
Definition: GFft.cpp:39
GVector sqrt(const GVector &vector)
Computes square root of vector elements.
Definition: GVector.cpp:1358
int factors(void) const
Return number of factorisation factors.
#define G_OP_ADD
Definition: GFft.cpp:38
GFft & operator*=(const GFft &fft)
Unary multiplication operator.
Definition: GFft.cpp:206
N-dimensional array class interface definition.
Fast Fourier Transformation class.
Definition: GFft.hpp:57
void factor7(const std::complex< double > *in, const int &istride, std::complex< double > *out, const int &ostride, const GFftWavetable &wavetable, const int &sign, const int &product, const int &n, const int &index)
Compute FFT for factor 7.
Definition: GFft.cpp:1214
std::vector< int > m_strides
Steps in each dimension.
Definition: GFft.hpp:183
GNdarray sign(const GNdarray &array)
Computes sign of array elements.
Definition: GNdarray.cpp:1238
int size(void) const
Return number of elements in array.
Definition: GNdarray.hpp:293
GChatter
Definition: GTypemaps.hpp:33
void require_same_shape(const std::string &method, const GFft &fft) const
Throw exception if FFT shapes differ.
Definition: GFft.cpp:676
const int & index(const int &factor) const
Return start index for a given factor.
N-dimensional array class.
Definition: GNdarray.hpp:44
GFft operator-(void) const
Unary minus operator.
Definition: GFft.cpp:252
Fast Fourier transformation class interface definition.
const std::vector< int > & shape(void) const
Return shape of array.
Definition: GFft.hpp:296
void factor2(const std::complex< double > *in, const int &istride, std::complex< double > *out, const int &ostride, const GFftWavetable &wavetable, const int &sign, const int &product, const int &n, const int &index)
Compute FFT for factor 2.
Definition: GFft.cpp:825
#define G_OP_MUL
Definition: GFft.cpp:40
#define G_FORWARD
Definition: GFft.cpp:42
int dim(void) const
Return dimension of Fast Fourier Transformation.
Definition: GFft.hpp:268
GVector sin(const GVector &vector)
Computes sine of vector elements.
Definition: GVector.cpp:1316
Exception handler interface definition.
void factor6(const std::complex< double > *in, const int &istride, std::complex< double > *out, const int &ostride, const GFftWavetable &wavetable, const int &sign, const int &product, const int &n, const int &index)
Compute FFT for factor 6.
Definition: GFft.cpp:1118
const double twopi
Definition: GMath.hpp:36
std::string parformat(const std::string &s, const int &indent=0)
Convert string in parameter format.
Definition: GTools.cpp:1143
int dim(void) const
Return dimension of array.
Definition: GNdarray.hpp:279
void factor4(const std::complex< double > *in, const int &istride, std::complex< double > *out, const int &ostride, const GFftWavetable &wavetable, const int &sign, const int &product, const int &n, const int &index)
Compute FFT for factor 4.
Definition: GFft.cpp:957
Mathematical function definitions.
std::string str(const unsigned short int &value)
Convert unsigned short integer value into string.
Definition: GTools.cpp:489