GammaLib 2.1.0.dev
Loading...
Searching...
No Matches
GModelSpatialDiffuseConst.cpp
Go to the documentation of this file.
1/***************************************************************************
2 * GModelSpatialDiffuseConst.cpp - Spatial isotropic model class *
3 * ----------------------------------------------------------------------- *
4 * copyright (C) 2010-2021 by Juergen Knoedlseder *
5 * ----------------------------------------------------------------------- *
6 * *
7 * This program is free software: you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation, either version 3 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
19 * *
20 ***************************************************************************/
21/**
22 * @file GModelSpatialDiffuseConst.cpp
23 * @brief Isotropic spatial model class implementation
24 * @author Juergen Knoedlseder
25 */
26
27/* __ Includes ___________________________________________________________ */
28#ifdef HAVE_CONFIG_H
29#include <config.h>
30#endif
31#include "GException.hpp"
32#include "GTools.hpp"
33#include "GMath.hpp"
36
37/* __ Constants __________________________________________________________ */
38
39/* __ Globals ____________________________________________________________ */
41const GModelSpatialRegistry g_spatial_const_registry(&g_spatial_const_seed);
42#if defined(G_LEGACY_XML_FORMAT)
43const GModelSpatialDiffuseConst g_spatial_const_legacy_seed(true, "ConstantValue");
44const GModelSpatialRegistry g_spatial_const_legacy_registry(&g_spatial_const_legacy_seed);
45#endif
46
47/* __ Method name definitions ____________________________________________ */
48#define G_MC_NORM "GModelSpatialDiffuseConst::mc_norm(GSkyDir&, double&)"
49#define G_READ "GModelSpatialDiffuseConst::read(GXmlElement&)"
50#define G_WRITE "GModelSpatialDiffuseConst::write(GXmlElement&)"
51
52/* __ Macros _____________________________________________________________ */
53
54/* __ Coding definitions _________________________________________________ */
55
56/* __ Debug definitions __________________________________________________ */
57
58
59/*==========================================================================
60 = =
61 = Constructors/destructors =
62 = =
63 ==========================================================================*/
64
65/***********************************************************************//**
66 * @brief Void constructor
67 *
68 * Constructs empty isotropic spatial model.
69 ***************************************************************************/
72{
73 // Initialise members
75
76 // Return
77 return;
78}
79
80
81/***********************************************************************//**
82 * @brief Model type constructor
83 *
84 * @param[in] dummy Dummy flag.
85 * @param[in] type Model type.
86 *
87 * Constructs empty isotropic spatial model by specifying a model @p type.
88 ***************************************************************************/
90 const std::string& type) :
92{
93 // Initialise members
95
96 // Set model type
97 m_type = type;
98
99 // Return
100 return;
101}
102
103
104/***********************************************************************//**
105 * @brief XML constructor
106 *
107 * @param[in] xml XML element.
108 *
109 * Constructs isotropic spatial model by extracting information from an XML
110 * element. See the read() method for more information about the expected
111 * structure of the XML element.
112 ***************************************************************************/
115{
116 // Initialise members
117 init_members();
118
119 // Read information from XML element
120 read(xml);
121
122 // Return
123 return;
124}
125
126
127/***********************************************************************//**
128 * @brief Value constructor
129 *
130 * @param[in] value Isotropic intensity value (\f$sr^{-1}\f$).
131 *
132 * Constructs isotropic spatial model by assigning an intensity of @p value
133 * in units of \f$sr^{-1}\f$ to the diffuse emission. This constructor
134 * explicitly sets the @a m_value member of the model.
135 ***************************************************************************/
138{
139 // Initialise members
140 init_members();
141
142 // Set parameter
144
145 // Perform autoscaling of parameter
146 autoscale();
147
148 // Return
149 return;
150}
151
152
153/***********************************************************************//**
154 * @brief Copy constructor
155 *
156 * @param[in] model Isotropic spatial model.
157 *
158 * Constructs isotropic spatial model by copying another isotropic spatial
159 * model.
160 ***************************************************************************/
163{
164 // Initialise members
165 init_members();
166
167 // Copy members
168 copy_members(model);
169
170 // Return
171 return;
172}
173
174
175/***********************************************************************//**
176 * @brief Destructor
177 *
178 * Destructs isotropic spatial model.
179 ***************************************************************************/
181{
182 // Free members
183 free_members();
184
185 // Return
186 return;
187}
188
189
190/*==========================================================================
191 = =
192 = Operators =
193 = =
194 ==========================================================================*/
195
196/***********************************************************************//**
197 * @brief Assignment operator
198 *
199 * @param[in] model Isotropic spatial model.
200 * @return Isotropic spatial model.
201 *
202 * Assigns an isotropic spatial model.
203 ***************************************************************************/
205{
206 // Execute only if object is not identical
207 if (this != &model) {
208
209 // Copy base class members
211
212 // Free members
213 free_members();
214
215 // Initialise members
216 init_members();
217
218 // Copy members
219 copy_members(model);
220
221 } // endif: object was not identical
222
223 // Return
224 return *this;
225}
226
227
228/*==========================================================================
229 = =
230 = Public methods =
231 = =
232 ==========================================================================*/
233
234/***********************************************************************//**
235 * @brief Clear isotropic spatial model
236 *
237 * Clears the isotropic spatial model. This method is equivalent to creating
238 * an isotropic spatial model using the void constructor.
239 ***************************************************************************/
241{
242 // Free class members
243 free_members();
246
247 // Initialise members
250 init_members();
251
252 // Return
253 return;
254}
255
256
257/***********************************************************************//**
258 * @brief Clone isotropic spatial model
259 *
260 * @return Pointer to deep copy of isotropic spatial model.
261 *
262 * Returns a pointer to a deep copy of the isotropic spatial model.
263 ***************************************************************************/
265{
266 // Clone isotropic spatial model
267 return new GModelSpatialDiffuseConst(*this);
268}
269
270
271/***********************************************************************//**
272 * @brief Evaluate isotropic spatial model value
273 *
274 * @param[in] photon Incident photon.
275 * @param[in] gradients Compute gradients?
276 * @return Model value (\f$sr^{-1}\f$).
277 *
278 * Evaluates the isotropic spatial model for a given @p photon, characterised
279 * by a sky direction, energy and arrival time \f$(\vec{p},E,t)\f$. By
280 * definition, the isotropic spatial model and gradient are independent of
281 * sky direction, energy and time. The model value is given by
282 *
283 * \f[
284 * M_\mathrm{S}(\vec{p}|E,t) = \frac{v}{4\pi}
285 * \f]
286 *
287 * where \f$v\f$ is the value() parameter, which is divided by the solid
288 * angle \f$4\pi\f$ of the celestial sphere.
289 *
290 * If the @p gradients flag is true the method will also evaluate the partial
291 * derivatives of the model. The value() gradient is given by
292 *
293 * \f[
294 * \frac{\partial M_\mathrm{S}(\vec{p}|E,t)}{\partial v_v} =
295 * \frac{v_s}{4\pi}
296 * \f]
297 *
298 * where \f$v=v_v v_s\f$ is the factorisation of the value() parameter into
299 * a value \f$v_v\f$ and scale \f$v_s\f$ term.
300 ***************************************************************************/
302 const bool& gradients) const
303{
304 // Set normalization constant
305 const double norm = 1.0 / gammalib::fourpi;
306
307 // Compute model value
308 double value = norm * m_value.value();
309
310 // Optionally compute partial derivatives
311 if (gradients) {
312
313 // Compute partial derivatives of the parameter values
314 double g_norm = (m_value.is_free()) ? norm * m_value.scale() : 0.0;
315
316 // Set gradient
317 m_value.factor_gradient(g_norm);
318
319 } // endif: computed partial derivatives
320
321 // Return model value
322 return (value);
323}
324
325
326/***********************************************************************//**
327 * @brief Return MC sky direction
328 *
329 * @param[in] energy Photon energy.
330 * @param[in] time Photon arrival time.
331 * @param[in,out] ran Random number generator.
332 * @return Sky direction.
333 *
334 * Returns an arbitrary direction on the celestial sphere within a simulation
335 * cone region that has been defined by a previous call to the mc_norm()
336 * method (if no such call was made the entire sky will be assumed as the
337 * simulation cone). The sky direction is independent of event @p energy and
338 * arrival @p time.
339 ***************************************************************************/
341 const GTime& time,
342 GRan& ran) const
343{
344 // Simulate offset from simulation cone centre
345 double theta = std::acos(1.0 - ran.uniform() * (1.0 - m_mc_cos_radius)) *
347 double phi = 360.0 * ran.uniform();
348
349 // Initialise sky direction with simulation cone centre
350 GSkyDir dir(m_mc_centre);
351
352 // Rotate sky direction by offset angles (phi, theta)
353 dir.rotate_deg(phi, theta);
354
355 // Return sky direction
356 return dir;
357}
358
359
360/***********************************************************************//**
361 * @brief Return normalization of constant diffuse source for Monte Carlo
362 * simulations
363 *
364 * @param[in] dir Centre of simulation cone.
365 * @param[in] radius Radius of simulation cone (deg).
366 * @return Model normalization.
367 *
368 * @exception GException::invalid_argument
369 * Radius of simulation cone not coprised in [0,180] degrees.
370 *
371 * Returns the normalization of a constant diffuse source. The normalization
372 * is given by the product between the fraction \f$f\f$ of the sky covered
373 * by the simulation cone
374 *
375 * \f[
376 * f = \frac{2\pi \left( 1-\cos(r) \right)}{4\pi}
377 * \f]
378 *
379 * (where \f$r\f$ is the radius of the simulation cone) and the model
380 * parameter value(). The normalization only depends of the radius of the
381 * simulation cone and is invariant to its centre.
382 ***************************************************************************/
384 const double& radius) const
385{
386 // Throw exception if the radius is invalid
387 if (radius < 0.0 || radius > 180.0) {
388 std::string msg = "Invalid simulation cone radius "+
389 gammalib::str(radius)+" specified. Please provide "
390 "a value comprised within 0 and 180 degrees.";
392 }
393
394 // Store cosine of simulation cone radius and cone centre
395 m_mc_centre = dir;
396 m_mc_cos_radius = std::cos(radius * gammalib::deg2rad);
397
398 // Compute fraction of sky covered by the simulation cone
399 double fraction = 0.5 * (1.0 - m_mc_cos_radius);
400
401 // Multiply by normalization value of model
402 double norm = fraction * value();
403
404 // Return normalization
405 return (norm);
406}
407
408
409/***********************************************************************//**
410 * @brief Read model from XML element
411 *
412 * @param[in] xml XML element.
413 *
414 * Read the isotropic source model information from an XML element. The XML
415 * element is expected to have the following format:
416 *
417 * <spatialModel type="DiffuseIsotropic">
418 * <parameter name="Value" scale="1" value="1" min="1" max="1" free="0"/>
419 * </spatialModel>
420 *
421 ***************************************************************************/
423{
424 // Verify number of model parameters
426
427 // Get value parameter
429
430 // Read value parameter
431 m_value.read(*par);
432
433 // Return
434 return;
435}
436
437
438/***********************************************************************//**
439 * @brief Write model into XML element
440 *
441 * @param[in] xml XML element.
442 *
443 * Write the isotropic source model information into an XML element. The XML
444 * element will have the following format:
445 *
446 * <spatialModel type="DiffuseIsotropic">
447 * <parameter name="Value" scale="1" value="1" min="1" max="1" free="0"/>
448 * </spatialModel>
449 *
450 ***************************************************************************/
452{
453 // Verify model type
455
456 // Get or create Value parameter
458
459 // Write parameter
460 m_value.write(*par);
461
462 // Return
463 return;
464}
465
466
467/***********************************************************************//**
468 * @brief Returns isotropic flux integrated in sky region
469 *
470 * @param[in] region Sky region.
471 * @param[in] srcEng Energy.
472 * @param[in] srcTime Time.
473 * @return Flux (adimensional or ph/cm2/s).
474 *
475 * Returns isotropic flux within a sky region. The flux \f$F\f$ is computed
476 * using
477 *
478 * \f[F = \frac{{\tt value}}{4 \pi} \times \Omega\f]
479 *
480 * where
481 * - \f${\tt value}\f$ is the normalisation factor returned by the value()
482 * method, and
483 * - \f$\Omega\f$ is the solid angle of the sky region.
484 ***************************************************************************/
486 const GEnergy& srcEng,
487 const GTime& srcTime) const
488{
489 // Set normalization constant
490 const double norm = 1.0 / gammalib::fourpi;
491
492 // Compute flux in sky region
493 double flux = norm * m_value.value() * region.solidangle();
494
495 // Return flux
496 return flux;
497}
498
499
500/***********************************************************************//**
501 * @brief Print isotropic source model information
502 *
503 * @param[in] chatter Chattiness.
504 * @return String containing model information.
505 ***************************************************************************/
506std::string GModelSpatialDiffuseConst::print(const GChatter& chatter) const
507{
508 // Initialise result string
509 std::string result;
510
511 // Continue only if chatter is not silent
512 if (chatter != SILENT) {
513
514 // Append header
515 result.append("=== GModelSpatialDiffuseConst ===");
516
517 // Append parameters
518 result.append("\n"+gammalib::parformat("Number of parameters"));
519 result.append(gammalib::str(size()));
520 for (int i = 0; i < size(); ++i) {
521 result.append("\n"+m_pars[i]->print(chatter));
522 }
523
524 } // endif: chatter was not silent
525
526 // Return result
527 return result;
528}
529
530
531/*==========================================================================
532 = =
533 = Private methods =
534 = =
535 ==========================================================================*/
536
537/***********************************************************************//**
538 * @brief Initialise class members
539 ***************************************************************************/
541{
542 // Initialise model type
543 m_type = "DiffuseIsotropic";
544
545 // Initialise Value
546 m_value.clear();
547 m_value.name("Value");
548 m_value.fix();
549 m_value.value(1.0);
550 m_value.scale(1.0);
551 m_value.range(0.0, 1000.0);
552 m_value.gradient(0.0);
553 m_value.has_grad(true);
554
555 // Initialise other members
557 m_mc_cos_radius = -1.0; // Set simulation cone to allsky
558
559 // Set parameter pointer(s)
560 m_pars.clear();
561 m_pars.push_back(&m_value);
562
563 // Return
564 return;
565}
566
567
568/***********************************************************************//**
569 * @brief Copy class members
570 *
571 * @param[in] model Isotropic spatial model.
572 ***************************************************************************/
574{
575 // Copy members
576 m_type = model.m_type; // Needed to conserve model type
577 m_value = model.m_value;
578 m_mc_centre = model.m_mc_centre;
580
581 // Set parameter pointer(s)
582 m_pars.clear();
583 m_pars.push_back(&m_value);
584
585 // Return
586 return;
587}
588
589
590/***********************************************************************//**
591 * @brief Delete class members
592 ***************************************************************************/
594{
595 // Return
596 return;
597}
598
599
600/***********************************************************************//**
601 * @brief Set boundary sky region
602 ***************************************************************************/
604{
605 // Set sky region circle (all sky)
606 GSkyRegionCircle region(0.0, 0.0, 180.0);
607
608 // Set region (circumvent const correctness)
609 const_cast<GModelSpatialDiffuseConst*>(this)->m_region = region;
610
611 // Return
612 return;
613}
#define G_WRITE
#define G_READ
Exception handler interface definition.
Mathematical function definitions.
#define G_MC_NORM
const GModelSpatialDiffuseConst g_spatial_const_seed
Isotropic spatial model class interface definition.
Spatial model registry class definition.
Gammalib tools definition.
GChatter
Definition GTypemaps.hpp:33
@ SILENT
Definition GTypemaps.hpp:34
double norm(const GVector &vector)
Computes vector norm.
Definition GVector.cpp:932
Class that handles energies in a unit independent way.
Definition GEnergy.hpp:48
void write(GXmlElement &xml) const
Set or update parameter attributes in XML element.
void read(const GXmlElement &xml)
Extract parameter attributes from XML element.
virtual ~GModelSpatialDiffuseConst(void)
Destructor.
void copy_members(const GModelSpatialDiffuseConst &model)
Copy class members.
GSkyDir m_mc_centre
Simulation cone centre.
virtual std::string print(const GChatter &chatter=NORMAL) const
Print isotropic source model information.
GModelSpatialDiffuseConst(void)
Void constructor.
GModelSpatialDiffuseConst & operator=(const GModelSpatialDiffuseConst &model)
Assignment operator.
virtual void clear(void)
Clear isotropic spatial model.
virtual GSkyDir mc(const GEnergy &energy, const GTime &time, GRan &ran) const
Return MC sky direction.
virtual GModelSpatialDiffuseConst * clone(void) const
Clone isotropic spatial model.
virtual void read(const GXmlElement &xml)
Read model from XML element.
virtual double mc_norm(const GSkyDir &dir, const double &radius) const
Return normalization of constant diffuse source for Monte Carlo simulations.
virtual void write(GXmlElement &xml) const
Write model into XML element.
double value(void) const
Get model value.
void init_members(void)
Initialise class members.
virtual double eval(const GPhoton &photon, const bool &gradients=false) const
Evaluate isotropic spatial model value.
void free_members(void)
Delete class members.
virtual double flux(const GSkyRegion &region, const GEnergy &srcEng=GEnergy(), const GTime &srcTime=GTime()) const
Returns isotropic flux integrated in sky region.
double m_mc_cos_radius
Cosine of sim. cone radius.
virtual void set_region(void) const
Set boundary sky region.
Abstract diffuse spatial model base class.
void init_members(void)
Initialise class members.
virtual GModelSpatialDiffuse & operator=(const GModelSpatialDiffuse &model)
Assignment operator.
void free_members(void)
Delete class members.
Interface definition for the spatial model registry class.
void autoscale(void)
Autoscale parameters.
std::string m_type
Spatial model type.
std::string type(void) const
Return model type.
const GSkyRegion * region(void) const
Return boundary sky region.
std::vector< GModelPar * > m_pars
Parameter pointers.
void init_members(void)
Initialise class members.
int size(void) const
Return number of parameters.
void free_members(void)
Delete class members.
GSkyRegionCircle m_region
Bounding circle.
bool is_free(void) const
Signal if parameter is free.
const double & scale(void) const
Return parameter scale.
bool has_grad(void) const
Signal if parameter gradient is computed analytically.
void range(const double &min, const double &max)
Set minimum and maximum parameter boundaries.
const double & factor_gradient(void) const
Return parameter factor gradient.
void fix(void)
Fix a parameter.
double gradient(void) const
Return parameter gradient.
void clear(void)
Clear parameter.
double value(void) const
Return parameter value.
const std::string & name(void) const
Return parameter name.
Class that handles photons.
Definition GPhoton.hpp:47
Random number generator class.
Definition GRan.hpp:44
double uniform(void)
Returns random double precision floating value in range 0 to 1.
Definition GRan.cpp:242
Sky direction class.
Definition GSkyDir.hpp:62
void rotate_deg(const double &phi, const double &theta)
Rotate sky direction by zenith and azimuth angle.
Definition GSkyDir.cpp:573
void clear(void)
Clear sky direction.
Definition GSkyDir.cpp:185
Interface for the circular sky region class.
Abstract interface for the sky region class.
const double & solidangle(void) const
Return solid angle of region.
Time class.
Definition GTime.hpp:55
XML element node class.
std::string parformat(const std::string &s, const int &indent=0)
Convert string in parameter format.
Definition GTools.cpp:1162
std::string str(const unsigned short int &value)
Convert unsigned short integer value into string.
Definition GTools.cpp:508
const GXmlElement * xml_get_par(const std::string &origin, const GXmlElement &xml, const std::string &name)
Return pointer to parameter with given name in XML element.
Definition GTools.cpp:1708
GXmlElement * xml_need_par(const std::string &origin, GXmlElement &xml, const std::string &name)
Return pointer to parameter with given name in XML element.
Definition GTools.cpp:1656
const double deg2rad
Definition GMath.hpp:43
void xml_check_parnum(const std::string &origin, const GXmlElement &xml, const int &number)
Checks number of parameters.
Definition GTools.cpp:1796
const double fourpi
Definition GMath.hpp:37
const double rad2deg
Definition GMath.hpp:44
void xml_check_type(const std::string &origin, GXmlElement &xml, const std::string &type)
Checks the model type.
Definition GTools.cpp:1838