
GammaLib CCD

Coding Conventions Document

Version draft

10 November 2011

Author: Jürgen Knödlseder
Approved by: Jürgen Knödlseder

Institut de Recherche en Astrophysique et Planétologie (IRAP)
9, avenue du Colonel-Roche

31028 Toulouse Cedex 4
FRANCE

GammaLib Coding Conventions Document ii

This page intentionally left blank

GammaLib Coding Conventions Document iii

Contents

GammaLib Coding Conventions Document 1

1 Introduction

The present document summarises the coding conventions that should be followed in implementing the
GammaLib toolbox. The respect of coherent coding conventions throughout the code improves code readi-
bility and enhances the portability of the code.

2 General coding rules

The following general rules should be followed:

R1 Each function and/or method terminates with a return statement.

R2 Each function and/or method has only a single exit point (i.e. a single return statement).

R3 Put a blank line at the end of each file.

R4 Use explicit for constructors to avoid use of the constructor for unintended type conversion.

R5 Do not use tabs to make code formating independent of editor configurations.

R6 Blocks are indented by 4 characters.

3 Coding style

3.1 Code configuration

The code configuration is controlled via an include file that has to be added on top of each source file. Each
source file should start with:

/* __ Includes ___ */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

Note that the config.h file should not be included in header files, since header file are used by the
outside world for which a different config.h include file may exist.

One of the most common options used throughout GammaLib is range checking. Range checking is particu-
larily important during code development since it allows to catch memory leaks. However, range checking
is time consuming and thus leads to somewhat slower code. Range checking can thus be disable during in-
stallation of GammaLib by using ./configure --disable-range-check during library installation. Within
the code, the following instruction adds range checking that dependens on the library configuration:

#if defined(G_RANGE_CHECK)

if (inx < 0 || inx >= m_num)

throw GException::out_of_range("GVector::operator(int)", inx, m_num);

#endif

Range checking is provided if the G RANGE CHECK macro is defined.

GammaLib Coding Conventions Document 2

3.2 Header inclusions

Each file should contain the #include directives that are necessary for compilation of the specific file. Only
#include directives that are already given by the corresponding header file can be omitted.

As GammaLib is written in C++, the C++ style headers should be used instead of the C style headers to en-
sure maximum portability. Examples of common C++ style headers are <cstdio> (instead of <stdio.h>),
<cmath> (instead of <math.h>), <cstring> (instead of <string.h>), etc. Functions and types should then
be prefixed by std::. For example, cos becomes std::cos, time t becomes std::time t, etc. One signif-
icant change is that fabs becomes std::abs since the C style abs function only applies to integers. Here,
the std:: prefix is crucial to distinguish the C++ function (which is also defined for doubles) from the C
function.

Note also that some compilers are more tolerant in omitting #include directives, such as <cstdio> or
<cstring>, so these directives should also be included for compatibility, even if they seem not to be
required on specific systems. Examples of include directives needed by common functions are:

<cstdio> contains std::fopen, std::fgets, std::fclose, std::fprintf, std::sprintf

<cstring> contains std::strncpy, std::memcpy

If possible, however, std::strncpy and std::memcpy should be avoided at all as these functions happend
to have some compatibility problems in the past.

3.3 C++ classes

3.3.1 Members

Class members should be either private or protected, the latter being generally used when a derived
class should be able to access base class data.

Members should be prefixed by m and should be in lower case. For long member names, additional
underscores may be added. Examples of valid member names are

m_num

m_response

m_grid_length

m_axis_dir_qual

Initialisation, copying and deleting of class members should be gathered in a single place to avoid memory
leaks. For this purpose, each C++ class should have the following private or protected methods for
memory management:

• init members() initializes all member variables and pointers to well defined initial values. The
class should be fully operational and consistent with these initial values. All pointers that will hold
dynamically allocated memory should be initialised to NULL.

• copy members(const &A a) copies all members from one instance a to the this instance.

• free members() frees all memory that has been allocated by the class. Memory pointers should be
set to NULL after the memory was deleted to signal that no valid memory is associated to the pointer.
This allows for checking if memory has been allocated before it is accessed.

(in the above notation, A is the class name and a is an instance of the class).

An example for valid init members(), copy members(const &A a) and free members() methods is:

GammaLib Coding Conventions Document 3

void GEbounds::init_members(void)

{

m_num = 0;

m_min = NULL;

m_max = NULL;

return;

}

void GEbounds::copy_members(const GEbounds& ebds)

{

m_num = ebds.m_num;

if (m_num > 0) {

m_min = new GEnergy[m_num];

m_max = new GEnergy[m_num];

for (int i = 0; i < m_num; ++i) {

m_min[i] = ebds.m_min[i];

m_max[i] = ebds.m_max[i];

}

}

return;

}

void GEbounds::free_members(void)

{

if (m_min != NULL) delete [] m_min;

if (m_max != NULL) delete [] m_max;

m_min = NULL;

m_max = NULL;

return;

}

3.3.2 Constructors, destructors and operators

Each class should have at least a void constructor, a copy constructor, a destructor and an assignment
operator. Additional constructors and operators can be implemented as required. The following ex-
ample shows the basic implementation for these 4 methods. Due to the usage of the init members(),
copy members(const &A a) and the free members() methods, most classes will have exactly this kind of
syntax:

GEbounds::GEbounds(void)

{

init_members();

return;

}

GEbounds::GEbounds(const GEbounds& ebds)

{

init_members();

copy_members(ebds);

return;

}

GEbounds::~GEbounds(void)

GammaLib Coding Conventions Document 4

{

free_members();

return;

}

GEbounds& GEbounds::operator= (const GEbounds& ebds)

{

if (this != &ebds) {

free_members();

init_members();

copy_members(ebds);

}

return *this;

}

Note that for a derived class, the assignment operator will have the form:

GEventCube& GEventCube::operator= (const GEventCube& cube)

{

if (this != &cube) {

this->GEvents::operator=(cube); // Copy base class members

free_members();

init_members();

copy_members(cube);

}

return *this;

}

Also note that for a derived class, init members(), copy members(const &A a) and free members()

should only act on derived class members but not on base class members. Any exception from
this rule needs very careful documentation since it can easily be the source of memory leaks.

3.3.3 Inheritence

Class inheritence is heavily used in GammaLib to implement instrument specific functionnalities that satisfy
a generic interface.

Derived classes should never set explicitely base class members. Base class members should be set by proper
constructors, and base class constructors are to to be invoked in derived class constructors.

3.3.4 Methods

Uniform public method names should be provided throughout GammaLib for all classes. Unless the public
method names are very long (which should be avoided), names should not comprise underscores as separa-
tors. Public method names are all lowercase.

Private or protected may differ from this since they are hidden within the class. Yet also here, all method
names should be lowercase, and the use of underscores should be limited.

In addition, the following public method names should be used:

Note the difference between load() and read() and between save() and write(). The load() and
save() methods should take as arguments a file name, and they will open the file, read or write some data,
and then close the file. In contrast, read() and write() will operate on files that are already open, and

GammaLib Coding Conventions Document 5

Table 1: Naming conventions for class methods.

Method Usage Implementation

clear() Set object to initial empty state all classes
print() Print object into string all classes (see section ??)
append() Append element to list of elements container classes
size() Return number of elements in object container classes
load() Load data from file (open, read, close) if applicable
save() Save data into file (open, write, close) if applicable
read() Read data from open file if applicable
write() Write data into open file if applicable
name() Name of object if applicable

after the read or write operation the files will remain open. Typically, these methods take a GFits* or a
GFitsHDU* pointer as argument.

Methods that perform checks should return a bool type and should start with the prefix is or has.

Valid examples are:

islong()

isin()

hasedisp()

Method arguments should be generally passed as const and by reference.

Numeric argument types should be typically int and double. Unless absolutely required, short int, long,
and float should be avoided. True/false checks should always be done using bool.

Methods should be declared as const if they do not alter class members. In some classes, pre-computations
are done to speed up calculations, and these pre-computations will alter class members. If these pre-
computation are not supposed to alter the content of a class, methods that perform pre-computations
should also be declared as const. Internally, they have to circumvent const correctness by casting the
pointer to non const or by using the mutable attribute in the declaration of the members that hold the
pre-computed values (the latter option is preferred).

3.3.5 Method arguments and return values

Arguments to methods should in general be passed by reference to reduce function overhead. In addition,
arguments that are not intended to be changed by a method call should be passed as const. Return
values should also be passed by reference. To assure that the return values will not change class members
inadvertably, return values passed by reference should also be declared as const.

If the class member is a pointer, the argument should also be a pointer to allow setting the pointer to NULL.
The exception to this are container classes which in general do not contain NULL pointers in the container.

Return values should be passed by reference if they concern class members.

If the class member is a pointer, and if the pointer may be NULL, it should be returned as a pointer. Again,
the pointer should be declared const to avoid inadvertable changes of the class members. The exception to
this are container classes which in general do not contain NULL pointers in the container. Container classes
should return references to container elements.

GammaLib Coding Conventions Document 6

An example is given by the following excerpt of the GObservation class. Note that in general there are
two distinct methods to set and to return a class member.

void obsname(const std::string& obsname);

void ebounds(const GEbounds& ebounds);

void gti(const GGti& gti);

void roi(const GRoi* roi);

void events(const GEvents* events);

void statistics(const std::string& statistics);

const std::string& obsname(void) const;

GTime tstart(void) const { return m_gti.tstart(); } // no class member

GTime tstop(void) const { return m_gti.tstop(); } // no class member

GEnergy emin(void) const { return m_ebounds.emin(); } // no class member

GEnergy emax(void) const { return m_ebounds.emax(); } // no class member

const GEbounds& ebounds(void) const;

const GGti& gti(void) const;

const GRoi* roi(void) const;

const GEvents* events(void) const;

const std::string& statistics(void) const;

3.3.6 Output

Output stream and logging operators should be implemented for every class as friend operators. An example
is:

#include <iostream>

#include "GLog.hpp"

class GFits {

friend std::ostream& operator<< (std::ostream& os, const GFits& fits);

friend GLog& operator<< (GLog& log, const GFits& fits);

...

The usage of friend operators (instead of member operators) allows for correct handling of code such as

log << std::endl << "This is a text" << std::endl;

To support these friend operators (and to support also the Python interface), each class should have a
print() method:

std::string print(void) const;

Using the print() method the output operators will take the following generic form:

std::ostream& operator<< (std::ostream& os, const GFits& fits)

{

os << fits.print();

return os;

}

GLog& operator<< (GLog& log, const GFits& fits)

{

log << fits.print();

return log;

}

GammaLib Coding Conventions Document 7

3.3.7 Container classes

Container classes are classes that contain list of elements.

Each container class should have element access operators operator[] implemented, returning either a
reference or a pointer to the class elements. A non-const and a const version of the operator should exist.

Similar to the C++ template classes, at() methods could also be implemented that perform range checking.

4 Documentation

Code documentation should be done within the source files using Doxygen compliant annotations.

The following rules apply.

4.1 File descriptor

Put a 80 character wide header comment on top of each file (header, source code, templates, etc.). The
header contains the file name, a brief description of the file content, the development period and the name
of the person which initially created the file, and a standard GNU Public License statement. The header
comment is immediately followed by a Doxygen compliant file description that provides the file name, a
brief description of the file content, and the name of the person which initially created the file.

/***

* GMatrix.cpp - matrix class *

* --- *

* copyright (C) 2006-2010 by Jurgen Knodlseder *

* --- *

* *

* This program is free software; you can redistribute it and/or modify *

* it under the terms of the GNU General Public License as published by *

* the Free Software Foundation; either version 2 of the License, or *

* (at your option) any later version. *

* *

***/

/**

* @file GMatrix.cpp

* @brief GVector class implementation.

* @author J. Knodlseder

*/

5 Miscellaneous

5.1 Version control

GammaLib applies a three-number version numbering scheme: major revision-minor revision-patch.

A major revision of 00 designates the development version of GammaLib. At this level, external interfaces
of GammaLibmay change constantly, hence no interface control system is implemented. The minor revision

tag will be incremented once new major features become available. The patch tag will be incremented
after adding minor features and code corrections.

GammaLib Coding Conventions Document 8

Once the development phase is finished the release phase is entred. At this moment the major revision

number will be incremented to 01.

During release phase, external interfaces of GammaLib will be under configuration control. If modifications
of existing external interfaces will be done, the major revision number will be incremented. At the same
time, the libtool version number of the GammaLib will also change.

The minor revision number will be incremented in the release phase when extensions of the existing
interfaces get implemented. Extensions should always be backward compatible, i.e. any existing software
should not break due to the add of extensions.

The patch number will be incremented in the release phase after bug corrections or code improvements.
The corresponding modifications should not change the functionality of the library.

