
GammaLib INST

Instrument specific interface

Version draft
7 July 2011

Author: Jürgen Knödlseder
Approved by: Jürgen Knödlseder

Institut de Recherche en Astrophysique et Planétologie (IRAP)
9, avenue du Colonel-Roche

31028 Toulouse Cedex 4
FRANCE

GammaLib Instrument specific interface ii

This page intentionally left blank

GammaLib Instrument specific interface iii

Contents

GammaLib Instrument specific interface 1

1 Introduction

The present document describes the instrument specific interface of the GammaLib toolbox and provides
guideslines of how to add a new interface to the toolbox.

The general philosophy of GammaLib is that instrument specific interfaces are implemented as classes that
derive from abstract base classes (i.e. the base class can not be instantiated). The base class will implement
as most methods as possible to reduce the workload for integration of new instrument specific interfaces.
Most base class methods, however, are declared as virtual and may be overloaded by instrument specific
methods that implement more efficient computations adapted to the specific telescope.

The instrument specific aspects that have to be considered are the implementation of the instrument
response functions (base class GResponse) and of the instrument data (base classes GEvent and GEvents).
Each instrument may come with its own “data space”, and methods are needed that provide an abstract
representation of this data space (base classes GInstDir and GRoi). Also, instruments may point the sky
in various ways and strategies (in particular when comparing ground based telescopes to satellites), and
also here an abstract representation is needed of these strategies (base class GPointing). Finally, the data
related to the observation with a given instrument differ, and an abstract interface is needed to combined
those (base class GObservation).

Instrument specific classes are defined by inserting the instrument code XXX between the capital G and the
remaining part of the name. For example, the GResponse class for CTA becomes GCTAResponse. Throughout
this document, we will indicate derived class names by inserting the instrument code XXX in the name.
Instrument codes should always be 3 letters, unless name confusion imposes the use of more letters.

The following table summarizes the C++ classes that have to be implemented for each instrument. Exam-
ples for the names of the derived classes are given for CTA.

Table 1: Instrument specific classes that have to be implemented.

Name CTA name Section Usage

GEventAtom GCTAEventAtom ?? Implements individual events for unbinned analysis
GEventBin GCTAEventBin ?? Implements data space bins for binned analysis
GEventCube GCTAEventCube ?? Container of data space bins (event cube)
GEventList GCTAEventList ?? Container of events (event list)
GInstDir GCTAInstDir ?? Photon “direction” in instrument coordinates
GObservation GCTAObservation ?? Implements instrument specific observation
GPointing GCTAPointing ?? Implements instrument specific pointing
GResponse GCTAResponse ?? Implements instrument specific response function
GRoi GCTARoi ?? Implements instrument specific data selection

To start from scratch the implementation of a new instrument interface, we strongly recommend to use the
corresponding classes in the template directory of the GammaLib distribution (instrument code XXX).

GammaLib Instrument specific interface 2

2 Instrument response

2.1 Response model

2.1.1 General instrument response function

The general instrument response function R(~p′, E′, t′|~d, ~p, E, t) provides the effective detection area per

time, energy and solid angle (in units of cm2 s−1 MeV−1 sr−1) for measuring a photon at position ~p′ with
an energy of E′ and at the time t′ if it arrives from direction ~p with an energy of E at time t on the
instrument that is pointed towards ~d.

The photon arrival direction ~p is expressed by a coordinate on the celestial sphere, for example Right
Ascension α and Declination δ. For imaging instruments, the measured photon position ~p′ is likely also a
coordinate on the celestial sphere, while for non-imaging instruments (such as coded masks or Compton

telescopes), ~p′ will be typically the pixel number of the detector that measured the photon. The definition

of ~p′ needs to be implemented for each instrument as a derived class from the abstract base class GInstDir.

Assuming that the photon intensity received from a gamma-ray source is described by the source model
S(~p, E, t) (in units of photons cm−2 s−1 MeV−1 sr−1) the probability of measuring an event at position ~p′

with an energy of E′ at the time t′ from the source is given by

P (~p′, E′, t′|~d) =

∫ t′+∆t

0

∫

∞

E′
−∆E

∫

Ω

S(~p, E, t)R(~p′, E′, t′|~d, ~p, E, t) d~p dE dt (1)

(in units of counts s−1 MeV−1 sr−1). The terms ∆t and ∆E account for the statistical jitter related to the
measurement process and are of the order of a few time the rms in the time and energy measurements.

Computation of Eq. (??) in this general form is implemented in GammaLib by the virtual method
GObservation::model(). The following diagram gives the call tree of this method:

GObservation::model() - compute Eq. (1) for all source models

GModelSky::eval_gradients() - compute Eq. (1) for one source model

GModelSky::temporal() - perform integration over time (dt)

GModelSky::spectral() - perform integration over energy (dE)

GModelSky::spatial() - compute sky position integrated value

GResponse::irf() - perform integration over sky positions (dp)

The integration over sky positions ~p, expressed as a zenith angle θ and an azimuth angle φ, is given by

P~p(~p′, E
′, t′|~d, E, t) =

∫

θ,φ

S(θ, φ, E, t)R(~p′, E′, t′|~d, θ, φ, E, t) sin θ dθ dφ (2)

which has to be implemented for each instrument by the virtual method GResponse::irf().1

For unbinned analysis we also need to compute the predicted number of events for each source model (for
binned analysis we obtained this predicted number by summing over all data space bins). The predicted
number of events that are on average detected from a source is given by

Npred =

∫

GTI

∫

Ebounds

∫

ROI

P (~p′, E′, t′|~d) d~p′ dE′ dt′ (3)

Here, ROI defines an event selection region (such as, e.g., an acceptance cone). The definition of this event
selection region is instrument specific, and needs to be implemented for each instrument as a derived class

1
TODO: Why should we implement this for each instrument? What we need for each instrument is a point source IRF.

The integration could be done in the general case using a dumb (and slow) integration method. Thus, we need an instrument
dependent point source IRF (where the GModel argument is replaced by GSkyDir) and we need a default implementation of
the GModel method.

GammaLib Instrument specific interface 3

from the abstract base class GRoi. Ebounds are defines a set of energy intervals for which events are to be
detected, and GTI specifies the intervals of good time (Good Time Intervals) during which the events are
detected.

Computation of Eq. (??) in this general form is implemented in GammaLib by the virtual method
GObservation::npred(). The following diagram gives the call tree of this method:

GObservation::npred() - compute Eq. (3) for all source models

GObservation::npred_temp() - compute GTI integrated source model

GObservation::npred_kern_spec::eval() - time integration kernel

GObservation::npred_spec() - compute Ebounds integrated source model

GObservation::npred_kern_spat::eval() - energy integration kernel

GModelSky::npred() - compute ROI integrated source model

GResponse::npred() - perform integration over ROI

The integration over the ROI is given by

NROI(E
′, t′) =

∫

ROI

P (~p′, E′, t′|~d) d~p′ (4)

which has to be implemented for each instrument by the virtual method GResponse::npred().

The correspondance between the parameters given in the above equations and GammaLib C++ classes and
methods is summarized in Table ??.

Table 2: Correspondance between response parameters and GammaLib C++ classes and methods. The
last column indicates if an instrument specific implementation is required (yes) or if it is optional or not
possible.

Designation Equation Class (::method) Instrument specific

P (??) GObservation::model() optional
P~p (??) GResponse::irf() yes

Npred (??) GObservation::npred() optional
NROI (??) GResponse::npred) yes

S GModel no
~p′ GInstDir yes
E′ GEnergy no
t′ GTime no
d GPointing yes
~p GSkyDir no
E GEnergy no
t GTime no

ROI GRoi yes
GTI GGti no

2.1.2 Factorised source model

In many situations, the source model can be factorised into a position dependent, an energy dependent,
and a time dependent term, i.e.

S(~p, E, t) = SS(~p) × SE(E) × ST(t) (5)

GammaLib Instrument specific interface 4

2.2 Events

Data are comprised of events. The are two types of events: event atoms and event bins. Events are
combined together in GEvents. GEvents implements an iteration that allows iterating over event atoms or
event bins (the differenciation between both is transparent for the user). GEvents has an abstract method
pointer(int index) that returns a pointer to an event. This method, which has to be implement for each
instrument, assigns information to all events. Note that in general, only a single event can be accessed at
a time (any subsequent class to the pointer() method makes the old pointer invalid.

3 GammaLib instrument interface

3.1 Response class GResponse

The interface for the instrument response function is defined by the abstract base class GResponse. A
derived class GXXXResponse (where XXX is the instrument code) needs to be implemented to provide response
computations.

The interface of GResponse is shown below:

virtual void clear(void) = 0;

virtual GResponse* clone(void) const = 0;

virtual bool hasedisp(void) const = 0;

virtual bool hastdisp(void) const = 0;

virtual double irf(const GEvent& event, const GModelSky& model,

const GEnergy& srcEng, const GTime& srcTime,

const GObservation& obs) const = 0;

virtual double npred(const GModelSky& model, const GEnergy& srcEng,

const GTime& srcTime, const GObservation& obs) const = 0;

virtual std::string print(void) const = 0;

3.1.1 GXXXResponse::clear()

This method should set the instance to a clean initial state.

3.1.2 GXXXResponse::clone()

This method should return a pointer to a freshly allocated copy of the response instance.

3.1.3 GXXXResponse::hasedisp()

This method should return true if the response implements energy dispersions, false otherwise.

3.1.4 GXXXResponse::hastdisp()

This method should return true if the response implements time dispersions, false otherwise.

3.1.5 GXXXResponse::irf()

This method implements the computation of P~p(~p′, E
′, t′|~d, E, t) following Eq. (??).

GammaLib Instrument specific interface 5

3.1.6 GXXXResponse::npred()

This method implements the computation of NROI(E
′, t′) following Eq. (??).

3.1.7 Members

No members are implemented by GResponse.

3.2 Response support classes

3.2.1 GXXXInstDir

Needs to be implemented.

3.2.2 GXXXRoi

Region in instrument directions. Needs to be implemented.

3.2.3 GXXXPointing

Needs to be implemented.

3.3 Event containers GEventList and GEventCube

The following methods can optionally be implemented to compute N(~p′, E′, t′) more efficiently that is
done by the generic method GEvents::model().

3.3.1 GXXXEventList::model()

3.3.2 GXXXEventCube::model()

3.4 Event classes GEventAtom and GEventBin

3.4.1 GXXXEventAtom::model()

3.4.2 GXXXEventBin::model()

3.5 Observation class GObservation

virtual void clear(void) = 0;

virtual GObservation* clone(void) const = 0;

virtual GResponse* response(void) const = 0;

virtual GPointing* pointing(const GTime& time) const = 0;

virtual std::string instrument(void) const = 0;

virtual std::string print(void) const = 0;

virtual double model(const GModels& models, const GEvent& event,

GVector* gradient = NULL) const;

virtual double npred(const GModels& models, GVector* gradient = NULL) const;

GammaLib Instrument specific interface 6

3.5.1 GXXXObservation::clear()

3.5.2 GXXXObservation::clone()

3.5.3 GXXXObservation::response()

3.5.4 GXXXObservation::pointing()

3.5.5 GXXXObservation::instrument()

3.5.6 GXXXObservation::print()

3.5.7 GXXXObservation::model() (optional)

3.5.8 GXXXObservation::npred() (optional)

3.5.9 Members

GObservation implements the following protected members:

std::string m_name; //!< Name of observation

std::string m_statistics; //!< Optimizer statistics (default=poisson)

GEvents* m_events; //!< Pointer to event container

m name is the name of the observation, and can be any arbitrary string of characters. The precise value of
this string is not relevant.

m statistics defines the statistics (Poisson or Gaussian) that should be used for parameter optimization.

m events provides a pointer to the event container.

3.6 Source models

3.6.1 Factorized sky model (GModelSky)

A special type of source model is given by the factorisation

S(~p, E, t) = M(~p) × P (E) × V (t) (6)

where

M(~p) is a map of the intensity distribution (in units of sr−1),

P (E) is the source spectrum (in units of photons cm−2 s−1 MeV−1), and

V (t) is a source modulation function (unitless).

In this case, Eq. (??) becomes

N(~p′, E′, t′|~d) =

∫ t′+∆t

0

∫

∞

E′−∆E

∫

Ω

M(~p) × P (E) × V (t) × L(~d, ~p, E, t) × Aeff(~d, ~p, E, t) ×

PSF (~p′|~d, ~p, E, t) × Edisp(E′|~d, ~p, E, t)Tdisp(t′|~d, ~p, E, t) d~p dE dt . (7)

GammaLib Instrument specific interface 7

3.6.2 Data model (GModelData)

3.7 Sky directions and maps, energies and times

3.7.1 GSkyDir

3.7.2 GEnergy

3.7.3 GEbounds

3.7.4 GTime

3.7.5 GGti

3.7.6 Sky maps

3.8 Other support classes

3.8.1 Numerical integration (GIntegral)

3.8.2 Numerical derivatives (GDerivative)

GammaLib Instrument specific interface 8

4 CTA interface

4.1 CTA response

4.1.1 Introduction

The CTA response function depends on the following parameters

• the radial offset θ in the camera from the telescope pointing ~d,

• the polar angle φ in the camera from the telescope pointing ~d,

• the zenith angle Θ of the telescope pointing,

• the azimuth angle Φ of the telescope pointing,

• the optical efficiency ǫopt, and

• the array configuration C.

Furthermore, the angular separation between true and measured photon direction is denoted by δ. The
relation between the angular parameters is illustrated in Fig. ??.

Using these parameters, the CTA response function can be factorised as follows:

R(θ, E′|θ, φ, Θ, Φ, C, ǫopt, E)

= Aeff(θ, φ, Θ, Φ, C, ǫopt, E)PSF (δ|θ, φ, Θ, Φ, C, ǫopt, E)Edisp(E′|θ, φ, Θ, Φ, C, ǫopt, E) (8)

where

• Aeff(θ, φ, Θ, Φ, C, ǫopt, E) is the effective area (in units of counts photons−1 cm2),

• PSF (δ|θ, φ, Θ, Φ, C, ǫopt, E) is the point spread function (in units of sr−1), and

• Edisp(E
′|θ, φ, Θ, Φ, C, ǫopt, E) is the energy dispersion (in units of MeV−1).

Note that

1 = 2π

∫ π

0

PSF (δ|θ, φ, Θ, Φ, C, ǫopt, E) sin δ dδ (9)

and

1 =

∫

∞

0

Edisp(E′|θ, φ, Θ, Φ, C, ǫopt, E) dE′ (10)

Equation (??) can then be written as

P~p(~p′, E
′, t′|Θ, Φ, C, ǫopt, E)

=

∫ π

0

∫ 2π

0

S(θ, φ, E, t)Aeff(θ, φ, Θ, Φ, C, ǫopt, E)

× PSF (δ|θ, φ, Θ, Φ, C, ǫopt, E)Edisp(E′|θ, φ, Θ, Φ, C, ǫopt, E) sin θ dθ dφ (11)

where the source intensity is for convenience given as function of offset angle θ and polar angle φ around
the pointing direction ~d. The relevant angles and relations are illustrated in Fig. ??.

4.1.2 Point source response function

To be written ... (this is straight forward).

GammaLib Instrument specific interface 9

θ

p
→

d
→

δ p'
→

φ

Figure 1: Relation between the pointing direction ~d, the source position ~p, the observed photon arrival
direction ~p′, the radial offset and polar angles θ and φ, and the angular separation δ between true and
observed photon arrival direction. The large circle indicates the field of view, the dotted line indicates the
direction for which φ = 0. All azimuth angles are counted counter clockwise.

4.1.3 Extended source response function

To compute Eq. (??) for extended sources it is more convenient to switch to a coordinate system that is
centred on the location ~m of the model. We introduce thus the zenith and azimuth angles ρ and ω that
are defined by the vector from the model centre ~m to the observed photon arrival direction ~p′. Eq. (??)
writes then

P~p(~p′, E
′, t′|Θ, Φ, C, ǫopt, E)

=

∫ π

0

∫ 2π

0

S(ρ, ω, E, t)Aeff(ρ, ω, Θ, Φ, C, ǫopt, E)

× PSF (δ|ρ, ω, Θ, Φ, C, ǫopt, E)Edisp(E
′|ρ, ω, Θ, Φ, C, ǫopt, E) sinρ dρ dω (12)

which for azimuthally symmetric models S(ρ, E, t) simplifies to

P~p(~p′, E
′, t′|Θ, Φ, C, ǫopt, E) =

∫ π

0

S(ρ, E, t)K(ρ, ω) sin ρ dρ (13)

where

K(ρ, ω) =

∫ 2π

0

Aeff(ρ, ω, Θ, Φ, C, ǫopt, E)PSF (δ|ρ, ω, Θ, Φ, C, ǫopt, E)Edisp(E′|ρ, ω, Θ, Φ, C, ǫopt, E) dω

(14)
is the azimuthal integration of the instrument response function in the model coordinate system. Evaluation
of Eq. (??) for a given zenith angle ρ is done by the method GCTAResponse::irf kern rho::eval.

As PSF (δ|ρ, ω, Θ, Φ, C, ǫopt, E) falls strongly with increasing δ, we can define a maximum angle δmax

beyond which the PSF drops to zero. For a given zenith angle ρ, evaluation of Eq. (??) can thus be

GammaLib Instrument specific interface 10

p
→

δmax

p'
→

m
→

ζ

ρ

Δω

ω

Figure 2: Illustration of the arc ∆ω (thick blue) that is relevant for the computation of Eq. (??).

limited to an arc of length ∆ω which is given by

∆ω =

0 if ζ = 0 and ρ > δmax or ρ = 0 and ζ > δmax or ζ ≥ ρ + δmax

2π if ζ = 0 and ρ ≤ δmax or ρ = 0 and ζ ≤ δmax or ρ ≤ δmax − ζ

2 arccos

(

cos δmax − cos ζ cos ρ

sin ζ sin ρ

)

else

(15)

where ζ is the angular distance between the model centre ~m and the observed photon direction ~p′.
The relation is illustrated in Fig. ??. In the actual implementation, δmax is computed by the method
GCTAResponse::psf dummy max which returns δmax = 5σ, where σ is the (energy dependent) width of the
Gaussian taken to model the PSF.

Computation of Eq. (??) requires some coordinate transformations. These are done in the method
GCTAResponse::irf kern omega::eval which computes the argument of Eq. (??).

The PSF offset angle δ is computed using

δ = arccos(cos ρ cos ζ + sin ρ sin ζ cosω) (16)

while the offset angle θ of the true photon direction ~p in the camera system is computed using

θ = arccos(cos ρ cosλ + sin ρ sinλ cos(ω0 − ω)) (17)

where λ is the angular separation between the pointing direction ~d and the model centre ~m, and ω0 is the
angle between the λ and ζ sides, computed using

ω0 =

{

0 if λ = 0 or ζ = 0

arccos
(

cos η−cos λ cos ζ
sin λ sin ζ

)

else
(18)

and η is the angular separation between the pointing direction ~d and the measured photon direction ~p′. λ,
ω0, η and ζ are computed by the method GCTAResponse::irf extended which is the main driver routines
for the extended response computation.

GammaLib Instrument specific interface 11

θ

p
→

d
→

δ

η

p'
→

m
→

ζ

λ

ρ

ω0

ω

φ

Figure 3: Illustration of the angles that occur in the coordinate transformation from the model based
system (ρ, ω) to the camera based system (θ, φ).

Note that for λ = 0 the model centre ~m coincides with the pointing direction ~d, and θ = ρ irrespectively
of ω and ω0. For ζ = 0 the model centre ~m coincides with the measured photon direction ~p′, and the
phase of ω is undefined. However, for ζ = 0 the azimuth integration arc length ∆ω is either 0 or 2π (see
Eq. ??) the phase is irrelevant, and we arbitrary set ω0. The various angles and relations that occur in the
transformations are illustrated in Fig. ??.

4.1.4 Diffuse source response function

Not yet implemented.

4.2 CTA specific models

To be written.

GammaLib Instrument specific interface 12

5 Some junk I want to keep for reference

As PSF (δ|θ, φ, Θ, Φ, C, ǫopt, E) falls strongly with increasing δ, we may define a maximum angle δmax

beyond which the PSF drops to zero. Evaluation of Eq. (??) can thus be limited to a cicular region

around ~p′ with radius δmax (cf. left panel of Fig. ??). The azimuthal integration is then limited to an
interval [φ0 − ∆φ, φ0 + ∆φ] around the position angle

φ0 = arctan

(

sin(α~p′ − α~d
)

cos δ~d
tan δ~p′ − sin δ~d

cos(α~p′ − α~d
)

)

(19)

of ~p′ with respect to ~d, where (α~d
, δ~d

) and (α~p′ , δ~p′) are the Right Ascension and Declination of ~d and ~p′,
respectively. The half-width of the interval is given by

∆φ =

0 if ϑ = 0 and θ > δmax or
θ = 0 and ϑ > δmax or
ϑ ≥ θ + δmax

π if ϑ = 0 and θ ≤ δmax or
θ = 0 and ϑ ≤ δmax or
θ ≤ δmax − ϑ

arccos

(

cos δmax − cosϑ cos θ

sin ϑ sin θ

)

else

(20)

where ϑ is the angular separation between ~d and ~p′. Note that Eq. (??) is implemented by GSkyDir::posang()

while Eq. (??) is implemented by the support function cta roi arclength() which returns 2∆φ in units
of radians.

Furthemore, if the source model is only non-zero within a circular region around ~p, the integration can be
further restricted to the overlapping region between the maximum PSF extent and this circular region.

Since only S(θ, φ, E, t) and PSF (θ|ǫopt, Θ, Φ, θ, C, E) depend on φ, we can separate the azimuthal integra-
tion from the offset angle integration. We thus integrate first the product of source model and PSF over
all azimuth angles using

SPSF(θ|ǫopt, Θ, Φ, C, E) =

∫ 2π

0

S(θ, φ, E, t)PSF (δ|ǫopt, Θ, Φ, θ, C, E) dφ (21)

and then perform the offset angle integration using

P~p(~p′, E
′, t′|ǫopt, Θ, Φ, C, E) =

∫ π

0

SPSF(θ|ǫopt, Θ, Φ, C, E)Aeff(ǫopt, Θ, Φ, θ, C, E)Edisp(E′|ǫopt, Θ, Φ, θ, C, E) sin θ dθ (22)

Equation (??) can then be written as

P (~p′, E′, t′|~d) =

∫

∞

E′
−∆E

∫

Ω

S(~p, E, t′)Aeff(~d, ~p, E, t′)PSF (~p′|~d, ~p, E)Edisp(E′|~d, ~p, E) d~p dE (23)

Since for many astrophysical sources S(~p, E, t) drops quickly with energy, only photons near E′ contribute ef-

fectively to the integral. For this reason, energy dispersion can also often be neglected, and Edisp(E′|~d, ~p, E)
can be approximated by a δ-function, leading to

P (~p′, E′, t′|~d) =

∫

Ω

S(~p, E′, t′)Aeff(~d, ~p, E′, t)PSF (~p′|~d, ~p, E′) d~p . (24)

These simplifications may be considered when implementing GResponse::irf() for a specific instrument.

GammaLib Instrument specific interface 13

the computation of P (~p′, E′, t′|~d) for a specific instrument.

Using N(~p′, E′, t′|~d) given by Eq. (??), Npred, the total number of predicted events, can be written as

Npred =

∫

∞

0

∫

∞

0

∫

Ω

S(~p, E, t)L(~d, ~p, E, t)Aeff(~d, ~p, E, t)NPSF(~d, ~p, E, t)

NEdisp(~d, ~p, E, t)NTdisp(~d, ~p, E, t) d~p dE dt (25)

where the three integrals are to be taken over all possible photon arrival times t, true energies E, and
arrivial directions ~p. The integrations over the data space selections have been compactly written as

NPSF(~d, ~p, E, t) =

∫

ROI

PSF (~p′|~d, ~p, E, t) d~p′ (26)

NEdisp(~d, ~p, E, t) =

∫

Ebounds

Edisp(E′|~d, ~p, E, t) dE′ (27)

NTdisp(~d, ~p, E, t) =

∫

GTI

Tdisp(t
′|~d, ~p, E, t) dt′ . (28)

By combining all terms related to the instrument response function in

NR(~d, ~p, E, t) = L(~d, ~p, E, t)Aeff(~d, ~p, E, t)NPSF(~d, ~p, E, t)NEdisp(~d, ~p, E, t)NTdisp(~d, ~p, E, t) (29)

Eq. (??) simplifies to

Npred =

∫

∞

0

∫

∞

0

∫

Ω

S(~p, E, t)NR(~d, ~p, E, t) d~p dE dt (30)

