
GammaLib CCD
Coding Conventions DoumentVersion draft5 February 2011Author: J�urgen Kn�odlsederApproved by: J�urgen Kn�odlsederInstitut de Reherhe en Astrophysique et Plane�tologie (IRAP)9, avenue du Colonel-Rohe31028 Toulouse Cedex 4FRANCE

GammaLib Coding Conventions Doument ii

This page intentionally left blank

GammaLib Coding Conventions Doument iiiContents

GammaLib Coding Conventions Doument 11 IntrodutionThe present doument summarises the oding onventions that should be followed in implementing theGammaLib toolbox. The respet of oherent oding onventions throughout the ode improves ode readi-bility and enhanes the portability of the ode.2 General oding rulesThe following general rules should be followed:R1 Eah funtion and/or method terminates with a return statement.R2 Eah funtion and/or method has only a single exit point (i.e. a single return statement).R3 Put a blank line at the end of eah �le.R4 Use expliit for onstrutors to avoid use of the onstrutor for unintended type onversion.R5 Do not use tabs to make ode formating independent of editor on�gurations.R6 Bloks are indented by 4 haraters.3 Coding style3.1 Code on�gurationThe ode on�guration is ontrolled via an inlude �le that has to be added on top of eah soure �le. Eahsoure �le should start with:/* __ Inludes ___ */#ifdef HAVE_CONFIG_H#inlude <onfig.h>#endifNote that the onfig.h �le should not be inluded in header �les, sine header �le are used by theoutside world for whih a di�erent onfig.h inlude �le may exist.One of the most ommon options used throughout GammaLib is range heking. Range heking is partiu-larily important during ode development sine it allows to ath memory leaks. However, range hekingis time onsuming and thus leads to somewhat slower ode. Range heking an thus be disable during in-stallation of GammaLib by using ./onfigure --disable-range-hek during library installation. Withinthe ode, the following instrution adds range heking that dependens on the library on�guration:#if defined(G_RANGE_CHECK)if (inx < 0 || inx >= m_num)throw GExeption::out_of_range("GVetor::operator(int)", inx, m_num);#endifRange heking is provided if the G RANGE CHECK maro is de�ned.

GammaLib Coding Conventions Doument 23.2 Header inlusionsEah �le should ontain the #inlude diretives that are neessary for ompilation of the spei� �le. Only#inlude diretives that are already given by the orresponding header �le an be omitted.As GammaLib is written in C++, the C++ style headers should be used instead of the C style headers to en-sure maximum portability. Examples of ommon C++ style headers are <stdio> (instead of <stdio.h>),<math> (instead of <math.h>), <string> (instead of <string.h>), et. Funtions and types should thenbe pre�xed by std::. For example, os beomes std::os, time t beomes std::time t, et. One signif-iant hange is that fabs beomes std::abs sine the C style abs funtion only applies to integers. Here,the std:: pre�x is ruial to distinguish the C++ funtion (whih is also de�ned for doubles) from the Cfuntion.Note also that some ompilers are more tolerant in omitting #inlude diretives, suh as <stdio> or<string>, so these diretives should also be inluded for ompatibility, even if they seem not to berequired on spei� systems. Examples of inlude diretives needed by ommon funtions are:<stdio> ontains std::fopen, std::fgets, std::flose, std::fprintf, std::sprintf<string> ontains std::strnpy, std::mempyIf possible, however, std::strnpy and std::mempy should be avoided at all as these funtions happendto have some ompatibility problems in the past.3.3 C++ lasses3.3.1 MembersClass members should be either private or proteted, the latter being generally used when a derivedlass should be able to aess base lass data.Members should be pre�xed by m and should be in lower ase. For long member names, additionalundersores may be added. Examples of valid member names arem_numm_responsem_grid_lengthm_axis_dir_qualInitialisation, opying and deleting of lass members should be gathered in a single plae to avoid memoryleaks. For this purpose, eah C++ lass should have the following private or proteted methods formemory management:� init members() initializes all member variables and pointers to well de�ned initial values. Thelass should be fully operational and onsistent with these initial values. All pointers that will holddynamially alloated memory should be initialised to NULL.� opy members(onst &A a) opies all members from one instane a to the this instane.� free members() frees all memory that has been alloated by the lass. Memory pointers should beset to NULL after the memory was deleted to signal that no valid memory is assoiated to the pointer.This allows for heking if memory has been alloated before it is aessed.(in the above notation, A is the lass name and a is an instane of the lass).An example for valid init members(), opy members(onst &A a) and free members() methods is:

GammaLib Coding Conventions Doument 3void GEbounds::init_members(void){ m_num = 0;m_min = NULL;m_max = NULL;return;}void GEbounds::opy_members(onst GEbounds& ebds){ m_num = ebds.m_num;if (m_num > 0) {m_min = new GEnergy[m_num℄;m_max = new GEnergy[m_num℄;for (int i = 0; i < m_num; ++i) {m_min[i℄ = ebds.m_min[i℄;m_max[i℄ = ebds.m_max[i℄;}}return;}void GEbounds::free_members(void){ if (m_min != NULL) delete [℄ m_min;if (m_max != NULL) delete [℄ m_max;m_min = NULL;m_max = NULL;return;}3.3.2 Construtors, destrutors and operatorsEah lass should have at least a void onstrutor, a opy onstrutor, a destrutor and an assignmentoperator. Additional onstrutors and operators an be implemented as required. The following ex-ample shows the basi implementation for these 4 methods. Due to the usage of the init members(),opy members(onst &A a) and the free members() methods, most lasses will have exatly this kind ofsyntax:GEbounds::GEbounds(void){ init_members();return;}GEbounds::GEbounds(onst GEbounds& ebds){ init_members();opy_members(ebds);return;}GEbounds::~GEbounds(void)

GammaLib Coding Conventions Doument 4{ free_members();return;}GEbounds& GEbounds::operator= (onst GEbounds& ebds){ if (this != &ebds) {free_members();init_members();opy_members(ebds);}return *this;}Note that for a derived lass, the assignment operator will have the form:GEventCube& GEventCube::operator= (onst GEventCube& ube){ if (this != &ube) {this->GEvents::operator=(ube); // Copy base lass membersfree_members();init_members();opy_members(ube);}return *this;}Also note that for a derived lass, init members(), opy members(onst &A a) and free members()should only at on derived lass members but not on base lass members. Any exeption fromthis rule needs very areful doumentation sine it an easily be the soure of memory leaks.3.3.3 InheriteneClass inheritene is heavily used in GammaLib to implement instrument spei� funtionnalities that satisfya generi interfae.Derived lasses should never set expliitely base lass members. Base lass members should be set by properonstrutors, and base lass onstrutors are to to be invoked in derived lass onstrutors.3.3.4 MethodsUniform publi method names should be provided throughout GammaLib for all lasses. Unless the publimethod names are very long (whih should be avoided), names should not omprise undersores as separa-tors. Publi method names are all lowerase.Private or protetedmay di�er from this sine they are hidden within the lass. Yet also here, all methodnames should be lowerase, and the use of undersores should be limited.In addition, the following publi method names should be used:Note the di�erene between load() and read() and between save() and write(). The load() andsave() methods should take as arguments a �le name, and they will open the �le, read or write some data,and then lose the �le. In ontrast, read() and write() will operate on �les that are already open, and

GammaLib Coding Conventions Doument 5Table 1: Naming onventions for lass methods.Method Usage Implementationlear() Set objet to initial empty state all lassesprint() Print objet into string all lasses (see setion ??)append() Append element to list of elements ontainer lassessize() Return number of elements in objet ontainer lassesload() Load data from �le (open, read, lose) if appliablesave() Save data into �le (open, write, lose) if appliableread() Read data from open �le if appliablewrite() Write data into open �le if appliablename() Name of objet if appliableafter the read or write operation the �les will remain open. Typially, these methods take a GFits* or aGFitsHDU* pointer as argument.Methods that perform heks should return a bool type and should start with the pre�x is or has.Valid examples are:islong()isin()hasedisp()Method arguments should be generally passed as onst and by referene.Numeri argument types should be typially int and double. Unless absolutely required, short int, long,and float should be avoided. True/false heks should always be done using bool.Methods should be delated as onst if they do not alter lass members. In some lasses, pre-omputationsare done to speed up alulations, and these pre-omputations will alter lass members. If these pre-omputation are not supposed to alter the ontent of a lass, methods that perfom pre-omputationsshould also be delared as onst. Internally, they have to irumvent onst orretness by asting thepointer to non onst.3.3.5 Arguments and return valuesArguments to methods should in general be passed by referene to redue funtion overhead. In addition,arguments that are not intended to be hanged by a method all should be passed as onst. Returnvalues should also be passed by referene. To assure that the return values will not hange lass membersinadvertably, return values passed by referene should also be delared as onst.If the lass member is a pointer, the argument should also be a pointer to allow setting the pointer to NULL.The exeption to this are ontainer lasses whih in general do not ontain NULL pointers in the ontainer.Return values should be passed by referene if they onern lass members.If the lass member is a pointer, and if the pointer may be NULL, it should be returned as a pointer. Again,the pointer should be delared onst to avoid inadvertable hanges of the lass members. The exeption tothis are ontainer lasses whih in general do not ontain NULL pointers in the ontainer. Container lassesshould return referenes to ontainer elements.An example is given by the following exerpt of the GObservation lass. Note that in general there aretwo distint methods to set and to return a lass member.

GammaLib Coding Conventions Doument 6void obsname(onst std::string& obsname);void ebounds(onst GEbounds& ebounds);void gti(onst GGti& gti);void roi(onst GRoi* roi);void events(onst GEvents* events);void statistis(onst std::string& statistis);onst std::string& obsname(void) onst;GTime tstart(void) onst { return m_gti.tstart(); } // no lass memberGTime tstop(void) onst { return m_gti.tstop(); } // no lass memberGEnergy emin(void) onst { return m_ebounds.emin(); } // no lass memberGEnergy emax(void) onst { return m_ebounds.emax(); } // no lass memberonst GEbounds& ebounds(void) onst;onst GGti& gti(void) onst;onst GRoi* roi(void) onst;onst GEvents* events(void) onst;onst std::string& statistis(void) onst;3.3.6 More about onst orretnessUse mutable keyword for ahed variables, when objet will not logially hange.3.3.7 OutputOutput stream and logging operators should be implemented for every lass as friend operators. An exampleis:#inlude <iostream>#inlude "GLog.hpp"lass GFits {friend std::ostream& operator<< (std::ostream& os, onst GFits& fits);friend GLog& operator<< (GLog& log, onst GFits& fits);...The usage of friend operators (instead of member operators) allows for orret handling of ode suh aslog << std::endl << "This is a text" << std::endl;To support these friend operators (and to support also the Python interfae), eah lass should have aprint() method:std::string print(void) onst;Using the print() method the output operators will take the following generi form:std::ostream& operator<< (std::ostream& os, onst GFits& fits){ os << fits.print();return os;}GLog& operator<< (GLog& log, onst GFits& fits){

GammaLib Coding Conventions Doument 7log << fits.print();return log;}3.3.8 Container lassesContainer lasses are lasses that ontain list of elements.Eah ontainer lass should have element aess operators operator[℄ implemented, returning either areferene or a pointer to the lass elements. A non-onst and a onst version of the operator should exist.Similar to the C++ template lasses, at()methods ould also be implemented that perform range heking.4 DoumentationCode doumentation should be done within the soure �les using Doxygen ompliant annotations.The following rules apply.4.1 File desriptorPut a 80 harater wide header omment on top of eah �le (header, soure ode, templates, et.). Theheader ontains the �le name, a brief desription of the �le ontent, the development period and the nameof the person whih initially reated the �le, and a standard GNU Publi Liense statement. The headeromment is immediately followed by a Doxygen ompliant �le desription that provides the �le name, abrief desription of the �le ontent, and the name of the person whih initially reated the �le./** GMatrix.pp - matrix lass ** --- ** opyright (C) 2006-2010 by Jurgen Knodlseder ** --- ** ** This program is free software; you an redistribute it and/or modify ** it under the terms of the GNU General Publi Liense as published by ** the Free Software Foundation; either version 2 of the Liense, or ** (at your option) any later version. ** **//*** �file GMatrix.pp* �brief GVetor lass implementation.* �author J. Knodlseder*/5 Misellaneous5.1 Version ontrolGammaLib applies a three-number version numbering sheme: major revision-minor revision-path.

GammaLib Coding Conventions Doument 8A major revision of 00 designates the development version of GammaLib. At this level, external interfaesof GammaLibmay hange onstantly, hene no interfae ontrol system is implemented. The minor revisiontag will be inremented one new major features beome available. The path tag will be inrementedafter adding minor features and ode orretions.One the development phase is �nished the release phase is entred. At this moment the major revisionnumber will be inremented to 01.During release phase, external interfaes of GammaLib will be under on�guration ontrol. If modi�ationsof existing external interfaes will be done, the major revision number will be inremented. At the sametime, the libtool version number of the GammaLib will also hange.The minor revision number will be inremented in the release phase when extensions of the existinginterfaes get implemented. Extensions should always be bakward ompatible, i.e. any existing softwareshould not break due to the add of extensions.The path number will be inremented in the release phase after bug orretions or ode improvements.The orresponding modi�ations should not hange the funtionality of the library.

