
GammaLib CCD
Coding Conventions Do
umentVersion draft5 February 2011Author: J�urgen Kn�odlsederApproved by: J�urgen Kn�odlsederInstitut de Re
her
he en Astrophysique et Plane�tologie (IRAP)9, avenue du Colonel-Ro
he31028 Toulouse Cedex 4FRANCE

GammaLib Coding Conventions Do
ument ii

This page intentionally left blank

GammaLib Coding Conventions Do
ument iiiContents

GammaLib Coding Conventions Do
ument 11 Introdu
tionThe present do
ument summarises the
oding
onventions that should be followed in implementing theGammaLib toolbox. The respe
t of
oherent
oding
onventions throughout the
ode improves
ode readi-bility and enhan
es the portability of the
ode.2 General
oding rulesThe following general rules should be followed:R1 Ea
h fun
tion and/or method terminates with a return statement.R2 Ea
h fun
tion and/or method has only a single exit point (i.e. a single return statement).R3 Put a blank line at the end of ea
h �le.R4 Use expli
it for
onstru
tors to avoid use of the
onstru
tor for unintended type
onversion.R5 Do not use tabs to make
ode formating independent of editor
on�gurations.R6 Blo
ks are indented by 4
hara
ters.3 Coding style3.1 Code
on�gurationThe
ode
on�guration is
ontrolled via an in
lude �le that has to be added on top of ea
h sour
e �le. Ea
hsour
e �le should start with:/* __ In
ludes ___ */#ifdef HAVE_CONFIG_H#in
lude <
onfig.h>#endifNote that the
onfig.h �le should not be in
luded in header �les, sin
e header �le are used by theoutside world for whi
h a di�erent
onfig.h in
lude �le may exist.One of the most
ommon options used throughout GammaLib is range
he
king. Range
he
king is parti
u-larily important during
ode development sin
e it allows to
at
h memory leaks. However, range
he
kingis time
onsuming and thus leads to somewhat slower
ode. Range
he
king
an thus be disable during in-stallation of GammaLib by using ./
onfigure --disable-range-
he
k during library installation. Withinthe
ode, the following instru
tion adds range
he
king that dependens on the library
on�guration:#if defined(G_RANGE_CHECK)if (inx < 0 || inx >= m_num)throw GEx
eption::out_of_range("GVe
tor::operator(int)", inx, m_num);#endifRange
he
king is provided if the G RANGE CHECK ma
ro is de�ned.

GammaLib Coding Conventions Do
ument 23.2 Header in
lusionsEa
h �le should
ontain the #in
lude dire
tives that are ne
essary for
ompilation of the spe
i�
 �le. Only#in
lude dire
tives that are already given by the
orresponding header �le
an be omitted.As GammaLib is written in C++, the C++ style headers should be used instead of the C style headers to en-sure maximum portability. Examples of
ommon C++ style headers are <
stdio> (instead of <stdio.h>),<
math> (instead of <math.h>), <
string> (instead of <string.h>), et
. Fun
tions and types should thenbe pre�xed by std::. For example,
os be
omes std::
os, time t be
omes std::time t, et
. One signif-i
ant
hange is that fabs be
omes std::abs sin
e the C style abs fun
tion only applies to integers. Here,the std:: pre�x is
ru
ial to distinguish the C++ fun
tion (whi
h is also de�ned for doubles) from the Cfun
tion.Note also that some
ompilers are more tolerant in omitting #in
lude dire
tives, su
h as <
stdio> or<
string>, so these dire
tives should also be in
luded for
ompatibility, even if they seem not to berequired on spe
i�
 systems. Examples of in
lude dire
tives needed by
ommon fun
tions are:<
stdio>
ontains std::fopen, std::fgets, std::f
lose, std::fprintf, std::sprintf<
string>
ontains std::strn
py, std::mem
pyIf possible, however, std::strn
py and std::mem
py should be avoided at all as these fun
tions happendto have some
ompatibility problems in the past.3.3 C++
lasses3.3.1 MembersClass members should be either private or prote
ted, the latter being generally used when a derived
lass should be able to a

ess base
lass data.Members should be pre�xed by m and should be in lower
ase. For long member names, additionalunders
ores may be added. Examples of valid member names arem_numm_responsem_grid_lengthm_axis_dir_qualInitialisation,
opying and deleting of
lass members should be gathered in a single pla
e to avoid memoryleaks. For this purpose, ea
h C++
lass should have the following private or prote
ted methods formemory management:� init members() initializes all member variables and pointers to well de�ned initial values. The
lass should be fully operational and
onsistent with these initial values. All pointers that will holddynami
ally allo
ated memory should be initialised to NULL.�
opy members(
onst &A a)
opies all members from one instan
e a to the this instan
e.� free members() frees all memory that has been allo
ated by the
lass. Memory pointers should beset to NULL after the memory was deleted to signal that no valid memory is asso
iated to the pointer.This allows for
he
king if memory has been allo
ated before it is a

essed.(in the above notation, A is the
lass name and a is an instan
e of the
lass).An example for valid init members(),
opy members(
onst &A a) and free members() methods is:

GammaLib Coding Conventions Do
ument 3void GEbounds::init_members(void){ m_num = 0;m_min = NULL;m_max = NULL;return;}void GEbounds::
opy_members(
onst GEbounds& ebds){ m_num = ebds.m_num;if (m_num > 0) {m_min = new GEnergy[m_num℄;m_max = new GEnergy[m_num℄;for (int i = 0; i < m_num; ++i) {m_min[i℄ = ebds.m_min[i℄;m_max[i℄ = ebds.m_max[i℄;}}return;}void GEbounds::free_members(void){ if (m_min != NULL) delete [℄ m_min;if (m_max != NULL) delete [℄ m_max;m_min = NULL;m_max = NULL;return;}3.3.2 Constru
tors, destru
tors and operatorsEa
h
lass should have at least a void
onstru
tor, a
opy
onstru
tor, a destru
tor and an assignmentoperator. Additional
onstru
tors and operators
an be implemented as required. The following ex-ample shows the basi
 implementation for these 4 methods. Due to the usage of the init members(),
opy members(
onst &A a) and the free members() methods, most
lasses will have exa
tly this kind ofsyntax:GEbounds::GEbounds(void){ init_members();return;}GEbounds::GEbounds(
onst GEbounds& ebds){ init_members();
opy_members(ebds);return;}GEbounds::~GEbounds(void)

GammaLib Coding Conventions Do
ument 4{ free_members();return;}GEbounds& GEbounds::operator= (
onst GEbounds& ebds){ if (this != &ebds) {free_members();init_members();
opy_members(ebds);}return *this;}Note that for a derived
lass, the assignment operator will have the form:GEventCube& GEventCube::operator= (
onst GEventCube&
ube){ if (this != &
ube) {this->GEvents::operator=(
ube); // Copy base
lass membersfree_members();init_members();
opy_members(
ube);}return *this;}Also note that for a derived
lass, init members(),
opy members(
onst &A a) and free members()should only a
t on derived
lass members but not on base
lass members. Any ex
eption fromthis rule needs very
areful do
umentation sin
e it
an easily be the sour
e of memory leaks.3.3.3 Inheriten
eClass inheriten
e is heavily used in GammaLib to implement instrument spe
i�
 fun
tionnalities that satisfya generi
 interfa
e.Derived
lasses should never set expli
itely base
lass members. Base
lass members should be set by proper
onstru
tors, and base
lass
onstru
tors are to to be invoked in derived
lass
onstru
tors.3.3.4 MethodsUniform publi
 method names should be provided throughout GammaLib for all
lasses. Unless the publi
method names are very long (whi
h should be avoided), names should not
omprise unders
ores as separa-tors. Publi
 method names are all lower
ase.Private or prote
tedmay di�er from this sin
e they are hidden within the
lass. Yet also here, all methodnames should be lower
ase, and the use of unders
ores should be limited.In addition, the following publi
 method names should be used:Note the di�eren
e between load() and read() and between save() and write(). The load() andsave() methods should take as arguments a �le name, and they will open the �le, read or write some data,and then
lose the �le. In
ontrast, read() and write() will operate on �les that are already open, and

GammaLib Coding Conventions Do
ument 5Table 1: Naming
onventions for
lass methods.Method Usage Implementation
lear() Set obje
t to initial empty state all
lassesprint() Print obje
t into string all
lasses (see se
tion ??)append() Append element to list of elements
ontainer
lassessize() Return number of elements in obje
t
ontainer
lassesload() Load data from �le (open, read,
lose) if appli
ablesave() Save data into �le (open, write,
lose) if appli
ableread() Read data from open �le if appli
ablewrite() Write data into open �le if appli
ablename() Name of obje
t if appli
ableafter the read or write operation the �les will remain open. Typi
ally, these methods take a GFits* or aGFitsHDU* pointer as argument.Methods that perform
he
ks should return a bool type and should start with the pre�x is or has.Valid examples are:islong()isin()hasedisp()Method arguments should be generally passed as
onst and by referen
e.Numeri
 argument types should be typi
ally int and double. Unless absolutely required, short int, long,and float should be avoided. True/false
he
ks should always be done using bool.Methods should be de
lated as
onst if they do not alter
lass members. In some
lasses, pre-
omputationsare done to speed up
al
ulations, and these pre-
omputations will alter
lass members. If these pre-
omputation are not supposed to alter the
ontent of a
lass, methods that perfom pre-
omputationsshould also be de
lared as
onst. Internally, they have to
ir
umvent
onst
orre
tness by
asting thepointer to non
onst.3.3.5 Arguments and return valuesArguments to methods should in general be passed by referen
e to redu
e fun
tion overhead. In addition,arguments that are not intended to be
hanged by a method
all should be passed as
onst. Returnvalues should also be passed by referen
e. To assure that the return values will not
hange
lass membersinadvertably, return values passed by referen
e should also be de
lared as
onst.If the
lass member is a pointer, the argument should also be a pointer to allow setting the pointer to NULL.The ex
eption to this are
ontainer
lasses whi
h in general do not
ontain NULL pointers in the
ontainer.Return values should be passed by referen
e if they
on
ern
lass members.If the
lass member is a pointer, and if the pointer may be NULL, it should be returned as a pointer. Again,the pointer should be de
lared
onst to avoid inadvertable
hanges of the
lass members. The ex
eption tothis are
ontainer
lasses whi
h in general do not
ontain NULL pointers in the
ontainer. Container
lassesshould return referen
es to
ontainer elements.An example is given by the following ex
erpt of the GObservation
lass. Note that in general there aretwo distin
t methods to set and to return a
lass member.

GammaLib Coding Conventions Do
ument 6void obsname(
onst std::string& obsname);void ebounds(
onst GEbounds& ebounds);void gti(
onst GGti& gti);void roi(
onst GRoi* roi);void events(
onst GEvents* events);void statisti
s(
onst std::string& statisti
s);
onst std::string& obsname(void)
onst;GTime tstart(void)
onst { return m_gti.tstart(); } // no
lass memberGTime tstop(void)
onst { return m_gti.tstop(); } // no
lass memberGEnergy emin(void)
onst { return m_ebounds.emin(); } // no
lass memberGEnergy emax(void)
onst { return m_ebounds.emax(); } // no
lass member
onst GEbounds& ebounds(void)
onst;
onst GGti& gti(void)
onst;
onst GRoi* roi(void)
onst;
onst GEvents* events(void)
onst;
onst std::string& statisti
s(void)
onst;3.3.6 More about
onst
orre
tnessUse mutable keyword for
a
hed variables, when obje
t will not logially
hange.3.3.7 OutputOutput stream and logging operators should be implemented for every
lass as friend operators. An exampleis:#in
lude <iostream>#in
lude "GLog.hpp"
lass GFits {friend std::ostream& operator<< (std::ostream& os,
onst GFits& fits);friend GLog& operator<< (GLog& log,
onst GFits& fits);...The usage of friend operators (instead of member operators) allows for
orre
t handling of
ode su
h aslog << std::endl << "This is a text" << std::endl;To support these friend operators (and to support also the Python interfa
e), ea
h
lass should have aprint() method:std::string print(void)
onst;Using the print() method the output operators will take the following generi
 form:std::ostream& operator<< (std::ostream& os,
onst GFits& fits){ os << fits.print();return os;}GLog& operator<< (GLog& log,
onst GFits& fits){

GammaLib Coding Conventions Do
ument 7log << fits.print();return log;}3.3.8 Container
lassesContainer
lasses are
lasses that
ontain list of elements.Ea
h
ontainer
lass should have element a

ess operators operator[℄ implemented, returning either areferen
e or a pointer to the
lass elements. A non-
onst and a
onst version of the operator should exist.Similar to the C++ template
lasses, at()methods
ould also be implemented that perform range
he
king.4 Do
umentationCode do
umentation should be done within the sour
e �les using Doxygen
ompliant annotations.The following rules apply.4.1 File des
riptorPut a 80
hara
ter wide header
omment on top of ea
h �le (header, sour
e
ode, templates, et
.). Theheader
ontains the �le name, a brief des
ription of the �le
ontent, the development period and the nameof the person whi
h initially
reated the �le, and a standard GNU Publi
 Li
ense statement. The header
omment is immediately followed by a Doxygen
ompliant �le des
ription that provides the �le name, abrief des
ription of the �le
ontent, and the name of the person whi
h initially
reated the �le./** GMatrix.
pp - matrix
lass ** --- **
opyright (C) 2006-2010 by Jurgen Knodlseder ** --- ** ** This program is free software; you
an redistribute it and/or modify ** it under the terms of the GNU General Publi
 Li
ense as published by ** the Free Software Foundation; either version 2 of the Li
ense, or ** (at your option) any later version. ** **//*** �file GMatrix.
pp* �brief GVe
tor
lass implementation.* �author J. Knodlseder*/5 Mis
ellaneous5.1 Version
ontrolGammaLib applies a three-number version numbering s
heme: major revision-minor revision-pat
h.

GammaLib Coding Conventions Do
ument 8A major revision of 00 designates the development version of GammaLib. At this level, external interfa
esof GammaLibmay
hange
onstantly, hen
e no interfa
e
ontrol system is implemented. The minor revisiontag will be in
remented on
e new major features be
ome available. The pat
h tag will be in
rementedafter adding minor features and
ode
orre
tions.On
e the development phase is �nished the release phase is entred. At this moment the major revisionnumber will be in
remented to 01.During release phase, external interfa
es of GammaLib will be under
on�guration
ontrol. If modi�
ationsof existing external interfa
es will be done, the major revision number will be in
remented. At the sametime, the libtool version number of the GammaLib will also
hange.The minor revision number will be in
remented in the release phase when extensions of the existinginterfa
es get implemented. Extensions should always be ba
kward
ompatible, i.e. any existing softwareshould not break due to the add of extensions.The pat
h number will be in
remented in the release phase after bug
orre
tions or
ode improvements.The
orresponding modi�
ations should not
hange the fun
tionality of the library.

