{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Performing an unbinned analysis" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**In this tutorial you will learn to fit a parametric model to the event data (unbinned fit) and how to inspect the fit residuals**\n", "\n", "Now you are ready to fit the models for the source and the background to the data.\n", "\n", "We start by importing gammalib, ctools, and cscripts." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import gammalib\n", "import ctools\n", "import cscripts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will also use matplotlib to display the results." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally we add to our path the directory containing the example plotting scripts provided with the ctools installation." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.environ['CTOOLS']+'/share/examples/python/')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Preparing the model\n", "\n", "First, we will merge the two models we derived in the previous tutorials for source and background." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=== GModels ===\n", " Number of models ..........: 5\n", " Number of parameters ......: 86\n", "=== GModelSky ===\n", " Name ......................: Src001\n", " Instruments ...............: all\n", " Observation identifiers ...: all\n", " Model type ................: PointSource\n", " Model components ..........: \"PointSource\" * \"PowerLaw\" * \"Constant\"\n", " Number of parameters ......: 6\n", " Number of spatial par's ...: 2\n", " RA .......................: 83.6192131308071 +/- 0 deg (free,scale=1)\n", " DEC ......................: 22.0199996472185 +/- 0 deg (free,scale=1)\n", " Number of spectral par's ..: 3\n", " Prefactor ................: 5.7e-18 +/- 0 [0,infty[ ph/cm2/s/MeV (free,scale=5.7e-18,gradient)\n", " Index ....................: -2.48 +/- 0 [10,-10] (free,scale=-2.48,gradient)\n", " PivotEnergy ..............: 300000 MeV (fixed,scale=300000,gradient)\n", " Number of temporal par's ..: 1\n", " Normalization ............: 1 (relative value) (fixed,scale=1,gradient)\n", " Number of scale par's .....: 0\n", "=== GCTAModelBackground ===\n", " Name ......................: Background_023523\n", " Instruments ...............: HESS\n", " Observation identifiers ...: 023523\n", " Model type ................: CTABackground\n", " Model components ..........: \"Multiplicative\" * \"NodeFunction\" * \"Constant\"\n", " Number of parameters ......: 20\n", " Number of spatial par's ...: 3\n", " 1:Normalization ..........: 1 [0.001,1000] (fixed,scale=1,gradient)\n", " 2:Grad_DETX ..............: 0.0881748792818854 +/- 0.0222611841905954 deg^-1 (free,scale=1,gradient)\n", " 2:Grad_DETY ..............: -0.000701218995455618 +/- 0.0227202811076142 deg^-1 (free,scale=1,gradient)\n", " Number of spectral par's ..: 16\n", " Energy0 ..................: 700000 [7e-05,infty[ MeV (fixed,scale=700000)\n", " Intensity0 ...............: 0.00167503068442416 +/- 0.000204995398027476 [1.00182541969977e-13,infty[ ph/cm2/s/MeV (free,scale=0.00100182541969977,gradient)\n", " Energy1 ..................: 1197413.67463685 [0.000119741367463685,infty[ MeV (fixed,scale=1197413.67463685)\n", " Intensity1 ...............: 0.000275120588592054 +/- 1.41610992132859e-05 [3.21240099713853e-14,infty[ ph/cm2/s/MeV (free,scale=0.000321240099713853,gradient)\n", " Energy2 ..................: 2048285.01172474 [0.000204828501172474,infty[ MeV (fixed,scale=2048285.01172474)\n", " Intensity2 ...............: 0.000102369982797547 +/- 5.87189405970882e-06 [1.03007170346199e-14,infty[ ph/cm2/s/MeV (free,scale=0.000103007170346199,gradient)\n", " Energy3 ..................: 3503777.83227556 [0.000350377783227556,infty[ MeV (fixed,scale=3503777.83227556)\n", " Intensity3 ...............: 3.43310169853447e-05 +/- 2.52595458342912e-06 [3.30297405342054e-15,infty[ ph/cm2/s/MeV (free,scale=3.30297405342054e-05,gradient)\n", " Energy4 ..................: 5993530.69893743 [0.000599353069893743,infty[ MeV (fixed,scale=5993530.69893743)\n", " Intensity4 ...............: 1.04184963555313e-05 +/- 1.01064863096553e-06 [1.05911438600856e-15,infty[ ph/cm2/s/MeV (free,scale=1.05911438600856e-05,gradient)\n", " Energy5 ..................: 10252479.454662 [0.0010252479454662,infty[ MeV (fixed,scale=10252479.454662)\n", " Intensity5 ...............: 4.1837003769505e-06 +/- 5.25942224806527e-07 [3.39610080039421e-16,infty[ ph/cm2/s/MeV (free,scale=3.39610080039421e-06,gradient)\n", " Energy6 ..................: 17537798.7113509 [0.00175377987113509,infty[ MeV (fixed,scale=17537798.7113509)\n", " Intensity6 ...............: 8.6658971981008e-07 +/- 1.76584928413557e-07 [1.08897592165697e-16,infty[ ph/cm2/s/MeV (free,scale=1.08897592165697e-06,gradient)\n", " Energy7 ..................: 30000000 [0.003,infty[ MeV (fixed,scale=30000000)\n", " Intensity7 ...............: 3.41087754372141e-07 +/- 1.23894301613722e-07 [3.49185323889972e-17,infty[ ph/cm2/s/MeV (free,scale=3.49185323889972e-07,gradient)\n", " Number of temporal par's ..: 1\n", " Normalization ............: 1 (relative value) (fixed,scale=1,gradient)\n", "=== GCTAModelBackground ===\n", " Name ......................: Background_023526\n", " Instruments ...............: HESS\n", " Observation identifiers ...: 023526\n", " Model type ................: CTABackground\n", " Model components ..........: \"Multiplicative\" * \"NodeFunction\" * \"Constant\"\n", " Number of parameters ......: 20\n", " Number of spatial par's ...: 3\n", " 1:Normalization ..........: 1 [0.001,1000] (fixed,scale=1,gradient)\n", " 2:Grad_DETX ..............: 0.0153166143265463 +/- 0.0215144304488992 deg^-1 (free,scale=1,gradient)\n", " 2:Grad_DETY ..............: -0.00908019181469828 +/- 0.0213167666197536 deg^-1 (free,scale=1,gradient)\n", " Number of spectral par's ..: 16\n", " Energy0 ..................: 700000 [7e-05,infty[ MeV (fixed,scale=700000)\n", " Intensity0 ...............: 0.00126074399446221 +/- 6.18948752992e-05 [9.62519069451052e-14,infty[ ph/cm2/s/MeV (free,scale=0.000962519069451052,gradient)\n", " Energy1 ..................: 1197413.67463685 [0.000119741367463685,infty[ MeV (fixed,scale=1197413.67463685)\n", " Intensity1 ...............: 0.000220109488746193 +/- 1.10099106908638e-05 [2.95441986174209e-14,infty[ ph/cm2/s/MeV (free,scale=0.000295441986174209,gradient)\n", " Energy2 ..................: 2048285.01172474 [0.000204828501172474,infty[ MeV (fixed,scale=2048285.01172474)\n", " Intensity2 ...............: 0.000104377151461511 +/- 6.26567390995899e-06 [9.068492247571e-15,infty[ ph/cm2/s/MeV (free,scale=9.068492247571e-05,gradient)\n", " Energy3 ..................: 3503777.83227556 [0.000350377783227556,infty[ MeV (fixed,scale=3503777.83227556)\n", " Intensity3 ...............: 2.68164289254463e-05 +/- 2.2601490434718e-06 [2.78354314866283e-15,infty[ ph/cm2/s/MeV (free,scale=2.78354314866283e-05,gradient)\n", " Energy4 ..................: 5993530.69893743 [0.000599353069893743,infty[ MeV (fixed,scale=5993530.69893743)\n", " Intensity4 ...............: 8.96128027251196e-06 +/- 9.61601396204211e-07 [8.54399193266454e-16,infty[ ph/cm2/s/MeV (free,scale=8.54399193266454e-06,gradient)\n", " Energy5 ..................: 10252479.454662 [0.0010252479454662,infty[ MeV (fixed,scale=10252479.454662)\n", " Intensity5 ...............: 3.14829249162658e-06 +/- 4.37081753413707e-07 [2.62254954375342e-16,infty[ ph/cm2/s/MeV (free,scale=2.62254954375342e-06,gradient)\n", " Energy6 ..................: 17537798.7113509 [0.00175377987113509,infty[ MeV (fixed,scale=17537798.7113509)\n", " Intensity6 ...............: 6.09624701513041e-07 +/- 1.43872314987655e-07 [8.04982748537824e-17,infty[ ph/cm2/s/MeV (free,scale=8.04982748537824e-07,gradient)\n", " Energy7 ..................: 30000000 [0.003,infty[ MeV (fixed,scale=30000000)\n", " Intensity7 ...............: 3.44982419809933e-07 +/- 1.26076763285202e-07 [2.4708674312253e-17,infty[ ph/cm2/s/MeV (free,scale=2.4708674312253e-07,gradient)\n", " Number of temporal par's ..: 1\n", " Normalization ............: 1 (relative value) (fixed,scale=1,gradient)\n", "=== GCTAModelBackground ===\n", " Name ......................: Background_023559\n", " Instruments ...............: HESS\n", " Observation identifiers ...: 023559\n", " Model type ................: CTABackground\n", " Model components ..........: \"Multiplicative\" * \"NodeFunction\" * \"Constant\"\n", " Number of parameters ......: 20\n", " Number of spatial par's ...: 3\n", " 1:Normalization ..........: 1 [0.001,1000] (fixed,scale=1,gradient)\n", " 2:Grad_DETX ..............: 0.018749400342 +/- 0.0217067733288596 deg^-1 (free,scale=1,gradient)\n", " 2:Grad_DETY ..............: -0.126640342510319 +/- 0.020455126417247 deg^-1 (free,scale=1,gradient)\n", " Number of spectral par's ..: 16\n", " Energy0 ..................: 700000 [7e-05,infty[ MeV (fixed,scale=700000)\n", " Intensity0 ...............: 0.00109294743570479 +/- 5.37668986080239e-05 [8.7418891142236e-14,infty[ ph/cm2/s/MeV (free,scale=0.00087418891142236,gradient)\n", " Energy1 ..................: 1197413.67463685 [0.000119741367463685,infty[ MeV (fixed,scale=1197413.67463685)\n", " Intensity1 ...............: 0.000220103906688583 +/- 1.10283166290448e-05 [2.69181956755491e-14,infty[ ph/cm2/s/MeV (free,scale=0.000269181956755491,gradient)\n", " Energy2 ..................: 2048285.01172474 [0.000204828501172474,infty[ MeV (fixed,scale=2048285.01172474)\n", " Intensity2 ...............: 8.06623852687504e-05 +/- 5.23872750218462e-06 [8.28870337932099e-15,infty[ ph/cm2/s/MeV (free,scale=8.28870337932099e-05,gradient)\n", " Energy3 ..................: 3503777.83227556 [0.000350377783227556,infty[ MeV (fixed,scale=3503777.83227556)\n", " Intensity3 ...............: 2.85428972580395e-05 +/- 2.37266748207121e-06 [2.55227373106486e-15,infty[ ph/cm2/s/MeV (free,scale=2.55227373106486e-05,gradient)\n", " Energy4 ..................: 5993530.69893743 [0.000599353069893743,infty[ MeV (fixed,scale=5993530.69893743)\n", " Intensity4 ...............: 6.46456658892385e-06 +/- 7.36558401693409e-07 [7.85901111449516e-16,infty[ ph/cm2/s/MeV (free,scale=7.85901111449516e-06,gradient)\n", " Energy5 ..................: 10252479.454662 [0.0010252479454662,infty[ MeV (fixed,scale=10252479.454662)\n", " Intensity5 ...............: 3.20506991372933e-06 +/- 4.41036712274814e-07 [2.4199620497598e-16,infty[ ph/cm2/s/MeV (free,scale=2.4199620497598e-06,gradient)\n", " Energy6 ..................: 17537798.7113509 [0.00175377987113509,infty[ MeV (fixed,scale=17537798.7113509)\n", " Intensity6 ...............: 9.17351299053318e-07 +/- 2.02856047440946e-07 [7.45159440158635e-17,infty[ ph/cm2/s/MeV (free,scale=7.45159440158635e-07,gradient)\n", " Energy7 ..................: 30000000 [0.003,infty[ MeV (fixed,scale=30000000)\n", " Intensity7 ...............: 1.93348643577948e-07 +/- 9.48901838749967e-08 [2.29450949990163e-17,infty[ ph/cm2/s/MeV (free,scale=2.29450949990163e-07,gradient)\n", " Number of temporal par's ..: 1\n", " Normalization ............: 1 (relative value) (fixed,scale=1,gradient)\n", "=== GCTAModelBackground ===\n", " Name ......................: Background_023592\n", " Instruments ...............: HESS\n", " Observation identifiers ...: 023592\n", " Model type ................: CTABackground\n", " Model components ..........: \"Multiplicative\" * \"NodeFunction\" * \"Constant\"\n", " Number of parameters ......: 20\n", " Number of spatial par's ...: 3\n", " 1:Normalization ..........: 1 [0.001,1000] (fixed,scale=1,gradient)\n", " 2:Grad_DETX ..............: 0.0290076925442388 +/- 0.0231627042594752 deg^-1 (free,scale=1,gradient)\n", " 2:Grad_DETY ..............: 0.165459453396994 +/- 0.0212165299830029 deg^-1 (free,scale=1,gradient)\n", " Number of spectral par's ..: 16\n", " Energy0 ..................: 700000 [7e-05,infty[ MeV (fixed,scale=700000)\n", " Intensity0 ...............: 0.00173543806725313 +/- 0.000221842434989178 [9.64800822522881e-14,infty[ ph/cm2/s/MeV (free,scale=0.000964800822522881,gradient)\n", " Energy1 ..................: 1197413.67463685 [0.000119741367463685,infty[ MeV (fixed,scale=1197413.67463685)\n", " Intensity1 ...............: 0.000247432426542881 +/- 1.35075275068334e-05 [3.05783271724063e-14,infty[ ph/cm2/s/MeV (free,scale=0.000305783271724063,gradient)\n", " Energy2 ..................: 2048285.01172474 [0.000204828501172474,infty[ MeV (fixed,scale=2048285.01172474)\n", " Intensity2 ...............: 0.000102349095137416 +/- 6.00669028431716e-06 [9.6914727976462e-15,infty[ ph/cm2/s/MeV (free,scale=9.6914727976462e-05,gradient)\n", " Energy3 ..................: 3503777.83227556 [0.000350377783227556,infty[ MeV (fixed,scale=3503777.83227556)\n", " Intensity3 ...............: 3.39523135381865e-05 +/- 2.54888013407308e-06 [3.07160834724385e-15,infty[ ph/cm2/s/MeV (free,scale=3.07160834724385e-05,gradient)\n", " Energy4 ..................: 5993530.69893743 [0.000599353069893743,infty[ MeV (fixed,scale=5993530.69893743)\n", " Intensity4 ...............: 9.09839000917866e-06 +/- 9.25509371718351e-07 [9.735133179293e-16,infty[ ph/cm2/s/MeV (free,scale=9.735133179293e-06,gradient)\n", " Energy5 ..................: 10252479.454662 [0.0010252479454662,infty[ MeV (fixed,scale=10252479.454662)\n", " Intensity5 ...............: 3.01613230297962e-06 +/- 4.11382625961797e-07 [3.08544603688196e-16,infty[ ph/cm2/s/MeV (free,scale=3.08544603688196e-06,gradient)\n", " Energy6 ..................: 17537798.7113509 [0.00175377987113509,infty[ MeV (fixed,scale=17537798.7113509)\n", " Intensity6 ...............: 9.30049222211062e-07 +/- 1.86843120695054e-07 [9.77899025229569e-17,infty[ ph/cm2/s/MeV (free,scale=9.77899025229569e-07,gradient)\n", " Energy7 ..................: 30000000 [0.003,infty[ MeV (fixed,scale=30000000)\n", " Intensity7 ...............: 3.98006363733031e-07 +/- 1.41569683967725e-07 [3.09934606573553e-17,infty[ ph/cm2/s/MeV (free,scale=3.09934606573553e-07,gradient)\n", " Number of temporal par's ..: 1\n", " Normalization ............: 1 (relative value) (fixed,scale=1,gradient)\n" ] } ], "source": [ "srcmodel = 'crab.xml'\n", "bkgmodel = 'bkgmodel.xml'\n", "models = gammalib.GModels()\n", "for inmodels in [srcmodel,bkgmodel]:\n", " for model in gammalib.GModels(inmodels):\n", " models.append(model)\n", "print(models)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note how the source found by cssrcdetect was named *Src001*. We will call it *Crab* instead. Also, spectral parameters are set to default values, but you should make sure they are appropriate so that the model fit runs seamlessly. In this case it is best to set the value of the pivot energy for the Crab within our energy range (> 0.66 TeV). We will set it to 1 TeV." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "models['Src001'].name('Crab')\n", "models['Crab']['PivotEnergy'].value(1.e6)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will save this model to disk for later use." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "modelfile = 'crab_models.xml'\n", "models.save(modelfile)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fitting the model to the data\n", "\n", "The model fit is performed by ctlike. We will use the previously selected events." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "obsfile = 'obs_crab_selected.xml'\n", "like = ctools.ctlike()\n", "like['inobs'] = obsfile\n", "like['inmodel'] = modelfile\n", "like.run()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now look at the results from the optimisation and the fitted model." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=== GOptimizerLM ===\n", " Optimized function value ..: 98167.993\n", " Absolute precision ........: 0.005\n", " Acceptable value decrease .: 2\n", " Optimization status .......: converged\n", " Number of parameters ......: 86\n", " Number of free parameters .: 44\n", " Number of iterations ......: 28\n", " Lambda ....................: 0.1\n", "=== GModelSky ===\n", " Name ......................: Crab\n", " Instruments ...............: all\n", " Observation identifiers ...: all\n", " Model type ................: PointSource\n", " Model components ..........: \"PointSource\" * \"PowerLaw\" * \"Constant\"\n", " Number of parameters ......: 6\n", " Number of spatial par's ...: 2\n", " RA .......................: 83.6231161425766 +/- 0.00240718177620446 deg (free,scale=1)\n", " DEC ......................: 22.0247773403131 +/- 0.00218186675985154 deg (free,scale=1)\n", " Number of spectral par's ..: 3\n", " Prefactor ................: 4.80653958161532e-17 +/- 2.64950884427518e-18 [0,infty[ ph/cm2/s/MeV (free,scale=5.7e-18,gradient)\n", " Index ....................: -2.68230589724908 +/- 0.0650730512302727 [10,-10] (free,scale=-2.48,gradient)\n", " PivotEnergy ..............: 999999.999999999 MeV (fixed,scale=300000,gradient)\n", " Number of temporal par's ..: 1\n", " Normalization ............: 1 (relative value) (fixed,scale=1,gradient)\n", " Number of scale par's .....: 0\n" ] } ], "source": [ "print(like.opt())\n", "print(like.obs().models()['Crab'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The statistical 1-sigma positional uncertainty corresponds to 0.12 arcmin. Systematic uncertainties are not computed. The fitted position can be compared to the values of 83.629±0.005 degrees in Right Ascension and 22.012±0.001 degrees in Declination reported in [Holler et al. (2017)](https://arxiv.org/pdf/1707.04196.pdf).\n", "\n", "According to [SIMBAD](http://cdsportal.u-strasbg.fr/?target=Crab%20nebula), the Crab nebula is situated at a Right Ascension of 83.633 degrees and a Declination of 22.015 degrees, which is 0.013 degrees (0.82 arcmin) away from the fitted position.\n", "\n", "The intensity at 1 TeV of the Crab was fitted to (4.89±0.27)×10−11 photons cm−2 s−1 TeV−1 the spectral index of the power law is −2.70±0.07. This can be compared to the values of (3.45±0.05)×10−11 photons cm−2 s−1 TeV−1 and −2.63±0.01 reported in [Aharonian et al. (2006), A&A, 457, 899](https://www.aanda.org/articles/aa/abs/2006/39/aa5351-06/aa5351-06.html) (note that the datasets, calibrations etc. used in our analysis are not the same as in that paper).\n", "\n", "In the ctlike run above the energy dispersion, which relates the true photon energies to the energies of the reconstructed events, was not taken into account. By default **energy dispersion usage is disabled** since it involves an extra dimension in the data analysis which slows down the computations. We can run accounting for energy dispersion to compare the results." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "like['edisp'] = True\n", "like.run()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=== GOptimizerLM ===\n", " Optimized function value ..: 98168.820\n", " Absolute precision ........: 0.005\n", " Acceptable value decrease .: 2\n", " Optimization status .......: converged\n", " Number of parameters ......: 86\n", " Number of free parameters .: 44\n", " Number of iterations ......: 13\n", " Lambda ....................: 1\n", "=== GModelSky ===\n", " Name ......................: Crab\n", " Instruments ...............: all\n", " Observation identifiers ...: all\n", " Model type ................: PointSource\n", " Model components ..........: \"PointSource\" * \"PowerLaw\" * \"Constant\"\n", " Number of parameters ......: 6\n", " Number of spatial par's ...: 2\n", " RA .......................: 83.6217013908939 +/- 0.00262422672788241 deg (free,scale=1)\n", " DEC ......................: 22.0244582493434 +/- 0.00238660922515514 deg (free,scale=1)\n", " Number of spectral par's ..: 3\n", " Prefactor ................: 4.56725958702027e-17 +/- 2.41200684919881e-18 [0,infty[ ph/cm2/s/MeV (free,scale=5.7e-18,gradient)\n", " Index ....................: -2.66140151299329 +/- 0.0671763204868478 [10,-10] (free,scale=-2.48,gradient)\n", " PivotEnergy ..............: 999999.999999999 MeV (fixed,scale=300000,gradient)\n", " Number of temporal par's ..: 1\n", " Normalization ............: 1 (relative value) (fixed,scale=1,gradient)\n", " Number of scale par's .....: 0\n" ] } ], "source": [ "print(like.opt())\n", "print(like.obs().models()['Crab'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can verify that the results are broadly consistents with those obtained ignoring the energy dispersion.\n", "\n", "## Inspecting the fit residuals\n", "\n", "Following a model fit, you should always inspect the fit residuals. First let’s inspect the spectral residuals. You can do this using the csresspec script." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEOCAYAAACTqoDjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VOX58PHvnckCARJJAqgBEqiggiC7u6igQFlEcSlLAa2iVlvc61YFNa+0Wm37E7VBEZSAUoXWBRFRloq0AoqgrAJBwiIhQCAJIdvz/jGTYZJMMme2zExyf65rLjLnnOecJ8PJuefZxRiDUkopVV1UqDOglFIqPGmAUEop5ZYGCKWUUm5pgFBKKeWWBgillFJuaYBQSinllgYIpZRSbmmAUEop5ZYGCKWUUm5pgFBKKeVWdKgz4I+UlBSTnp4e6mwopVREWbdu3SFjTCtPx0V0gEhPT2ft2rWhzoZSSkUUEdlt5TitYgoTWVlZpKenExUVRXp6OllZWaHOklKqkQubEoSInAtMBlKAz40xr4Y4S/UmKyuLSZMmUVRUBMDu3buZNGkSAGPHjg1l1pRSjVhQSxAiMlNEDorI99W2DxaRrSLyo4g8AmCM2WyMuRO4CegTzHyF0ty5cxGRKq9x48Y5g0OloqIixo0bV+PYuXPnhijnSqnGJtgliFnAy8BblRtExAZMB64GcoA1IvKBMWaTiIwAHnGk8UlpaSk5OTkUFxf7lfFg6dChA5988onP6RMTE9m8eXON7YWFhRw5coTy8nJsNhstW7akWbNm/mS1QWvSpAlt27YlJiYm1FlRKmwFNUAYY1aKSHq1zf2AH40xOwFE5B3gWmCTMeYD4AMR+Rjw6atyTk4OLVq0ID09HRHxPfM+yMvLY+/evZSUlBAbG0tqairJyclVjtm3bx8AZ555pnPbhg0bKCkpqXG+2NhYunfvXiNtdUVFRYgILVu2dG4TEWJiYoiPj3dui4uLq5Efq/luSIwx5OXlkZOTQ4cOHUKdHaXCVijaIFKBPS7vc4ALROQK4HogDlhUW2IRmQRMAmjfvn2N/cXFxSELDrt376aiogKAkpISdu+2dxTw9LBNTU2tkhYgKiqK1NTUKsfFxcWxa9cuS/kxxnD06FGOHj3q3OYalAKR70glIiQnJ5ObmxvqrCgV1kIRINw9uY0xZjmw3FNiY0ymiOwHhsfGxvZ2e4EgBoe8vDzLD+mKigp27dpV4/jqD+rKB7Gnb/HJycmWr+3Ovn37ai2FeMp3nz4Nq1movr9AKBWJQhEgcoB2Lu/bAp6fWmHi5MmTHo/p27cvQ4YM4emnnwagrKyMIUOGcN555/HSSy8RFxdXI01ycnKNgFA5ziMlJcW5rfqDOj09ndmzZ7ttb3CtorIaHGqTl5fXYEsUSin3QhEg1gCdRKQDsBf4FTDGmxMYYz4EPuzTp8/tQcifR2eeeWaNUoBrO0LTpk3ZsWMHxcXFJCQkkJubS1paGomJiUH5Jn7GGWdQUFBQZxVVXFyc2yqmn3/+mfLy8hrbbTYbbdq0cb6vLTA2tvYLpRqTYHdznQesBs4WkRwR+Y0xpgy4B/gU2AzMN8b84OV5h4tIZn5+fuAz7aPU1FSiok59nBdffDFfffUVqampzJs3j9GjRzv3HT58mJEjR9K9e3cuvPBCNmzYANgfttdccw09e/bkjjvuwBjjTDNnzhz69etHjx49uOOOO6o81JOSkkhLSyM2NhawlxzS0tKqPKiTk5Odgc311b59+yr5Bntwad++vdtA6Kqy/aIyMFa2X+Tl5fnyESqlwkywezGNrmX7IupoiA6UqVOnBuW8t99es+Di2o4AMHToUN566y1+//vfs2HDBm699Vb+85//APDUU0/Rs2dP/vWvf/HFF18wfvx41q9fz9SpU7n00kt58skn+fjjj8nMzARg8+bNvPvuu6xatYqYmBh++9vfkpWVxfjx46tc35dv7lbbP/xpvwB7997q59TSh1LhLWxGUnsj1FVMtal8SEdFRXHDDTcwbdo05s2bxy9/+csqx3355Ze8//77AFx11VXk5eWRn5/PypUrWbBgAWAPMJXdVj///HPWrVtH3759AThx4gStW7cOeL5r467NxFvVq6gaY+8ppSJNRAYIERkODD/rrLPqPO6pp54K+LW9aegdMWIEDz74IMuXL69S7eJadVSpsleNu941xhgmTJjAc88950OO/VdbAPFm/IaVEkhtpY+G1oNKqUgRkZP1GWM+NMZMSkxMDFkeduXvqvVlMOzK38XAGwZy90N307x9c/YX7KeorIhd+bvod3E/52R8y5cvJyUlhYSEBC6//HLn9k8++YQjR44AMGDAAN577z0OHjwI2NswKr9th1L1dhdwP37DX9qmoVRoRGQJIlKckXoGt9x1S5VtxWXF3PXwXUyZPIXu3bsTHx/P7NmzAXuJZ/To0fTq1Yv+/fs7BwJ26dKFZ599lmuuuYaKigpiYmKYPn06aWlp9f47ubLafuGuB5XV3lPgvgeVtl8oFXzirroj3LlUMd2+ffv2Kvs2b97MueeeG7Rru5sqwxu78u3VJx0SG/cUD9XbIMBe+qje+8rd5201rSfBvleUClciss4Y47HuNiJLEOHaSG1JeSlUlMGh7Z6PdadpS2iW4vm4MGe19AHWelB503sKcM7F1LVrV9q3b09GRoZOra5UNREZIMLByZ2+TXmRVFZCcRMg3uOhNZWesP/bAAIEWOua628Pqtqqp3bv3k15eTnGGF1/Q6laRGSAsNqLKRzFlEIFsCvRl48+msTyYpIaUenDXRAJdO8pOLX+xrhx45zbaqt+zcrK4vHHH+enn37S0odq0CIyQIRDFVNcR9/aEAq3/UAUvrX7FAtgs5HkS+IGVPqwOvutv+bOncuYMVVngdHV/1RjEpEBIpJVRDWnzBbPaSe8r2MqLi+m2FbIrqY1e/94Fk0i5b4FlzDjT+8pqL0HVWJiIvfdd5/z/dixYy099L0pfSgVSTRA1LMSWzwVEuPTABRbeQxNaEYxx7xOW4ShiHLyD23y4cqQGNOCpMR2ng+sJ1baL2rbHxcXV2McSXx8PNOnT3cGBH+naXFX+lAq0miACJIDBw5w7733smbNGuLi4khPT+evf/0ryTEtiaooJb7oSJ3pk7udR97GKkt5UxCVgBDDaSe8n2ajeflJiqOOUxZT6HXaYgyUHm8QpQ84FTjy8vIQEbftCJ06dWLKlCk10r700ku4mySyeumjevfrStp+oSJJRAaIcG+kNsZw3XXXMWHCBN555x0A1q9fz88//0xK+5aYCigvs68d7Y2YkkJKY5sB3qUDoCKG5rYUWqZ4P7hul4+ljnCWnJxM27Ztq7RjuKrt2/9ZZ51VpQ0CrJc+tP1CRZqIDBDh0Ehdl2XLlhETE8Odd97p3NajRw+WL1/OtaOvo03rNmzatplNmzYxcuRI9uzZQ3FxMZMnT3Y+MBDhsekvs2zZMlq2bMk777xDwvEC4iqOEXe69yOGjxwopKy0giMHvC9BNCltRVl0oe9jNyAie1C5U/kg91QKmDJlitsSSHXu2i/AHky0ikqFWkQGCKumfvgDm/Z5X19fl7REG/de3rbOY77//nt693a7GirfrP+WVZ+tpMcl9v0zZ84kKSmJEydO0LdvX0aNGkVycjKFhYX06tWLv/zlLzz99NNMnTqVv9z/AKa42KcxGNESh4lphi/Tb0WZWKLLgJijHo91qwH1oALPjdedOnXy+xruqqi0ekrVt7AKECIyEhgKtAamG2OWhDhLAderR0/S2p+q5vn73//OwoULAdizZw/bt293Thl+8803AzBu3Diuv/56bE8/TbmPz+iYE/nEmpPEtfW+e+7+vXlUGNgV4+vt0rjGb4wZM8btt//09HS3kyympaWRnZ3tfO+uikqrp1QoBD1AiMhMYBhw0Bhznsv2wcDfsFeov26MmWaM+RfwLxFpCbwA+BUgnhre1Z/kblkZdNW1a1fee+89t/vim57q3rp8+XKWLl3K6tWriY+P54orrqC4uNhtOhEhOimJ6CTfmopP7tzlc+kjJqoFFRJLVEGCT9euMM0ptBWRZKs5uM2jBlT6yMjIcNt+kZGRUeNYK1VUWj2lgq0+pvueBQx23SAiNmA6MAToAowWkS4uhzzh2B+RrrrqKk6ePMmMGTOc29asWcOKFSsAqDCGHbkFbPnpALHNWrC/sIIlX61j9X//y96jJ9iRa19fevrMOezILeDlGbPo1vsCduQWkFfgfm1oT2ynJSJNmviUNrakCJspo4mtiU+v6IpYoiuaQ0on718xTX3KczgaO3YsmZmZpKWlISKkpaWRmZlZowTgbxVVbT2olPJW0EsQxpiVIpJebXM/4EdjzE4AEXkHuFZENgPTgE+MMd8EO2/BIiIsXLiQe++9l2nTptGkSRPS09MZOXIkBpzjqC+/6mrmzZ7J0P4X0uGsTvTo3dd5jvj4ZmzfuplrB15Gi4QE/pY5i+LSco4Cyc29n5/In9IHO3f53DgO9iqqqDIb+/f6sK5DxWnE2ApIaSDVU1YG37mrovKnekopX4WqDSIV2OPyPge4APgdMBBIFJGzjDGvVU8oIpOASYBzvYRwdOaZZzJ//vwa268fNBKAX7RqDjRnxefua9EKCwscP/3JuW1HboHbY+uDr9VTAPHEUBzdBKi5Wp4nURUxlNIc8KHxpZFWT7mjDdzKF6EKEO6eFMYY83fg73UlNMZkish+YHhsbKz7rkINWHFpuc+B4rSmMT6VPmynJfrcOA4QW3SUWCAqvpnXaY9JcxCxVzd5y59uuWHGavdad7SBW/mqXhYMclQxfVTZSC0iFwFTjDGDHO8fBTDGeLXocp8+fczatWurbAv3BYPyfsoFILl9K+/TFpzk6IlSn65bXFpOkxibo+RSv8oOH6b8aM3Rx1YU0JwKgYIkH4Ji6QkSy8tJsrlve9m8ax/nfv/n2tN3uwH63FL7/jA0depUS+MvaqMN3I1DuC8YtAboJCIdgL3ArwDLd2U4jKT29Vt8Ir5UtNglN4/zqQQAoa2e8qf943j2IQzRNPGhB5Vfvad2f2l/bXTfG82jEAUXbeBWgVQf3VznAVcAKSKSAzxljHlDRO4BPsXezXWmMeaHYOclHAj2RuxQCEX1lL/iTAklIsTUUgqoS0lJGWXArnj302kcskVxyxm1zGvV/GJ+WVDEjV5fFTiw0f5vCAJEsBq4tQ2jcaqPXkyja9m+CFjk4zlDPtWGr1U1R/a4H+cQbKc1jfGlmRfAr95T/oo1J4k5kY9UeB8gyqNaAIIP5Qe2lubDGWdz4+A3vU/85lB7kHhzqA9XdghgCSQQDdzahtE4eR0gHIPY2hljNgQhP1bzEPIqpkgTqdVT/jSQS4UhSmJrnf32cOkxRvzwO7f7th7ewqak/3ILPjykm1fwy9M7+Fb6gICXQLxp4PZnDildA6PhsRQgRGQ5MMJx/HogV0RWGGPuD2LeahUOJYjGxp/qKfC9isqf9ouSXfsoMVH4UlBOKGhNFy5kK595ndav0gf4V/KohdXFj/yha2A0PFb/chKNMcdE5DbgTWPMUyKiJYha2Gw2unXrhjEGm83Gyy+/zMUXX+z1eSZOnMiwYcO44YYbgpBL69xVT3VPP50N2QdqTbPgnSymv/Q8AJN+/wA3j/01TaPKufHGG9mxYwc2m43hw4czbdo0AF577TWmT5+OzWajefPmZGZm0qVLF7Kzszn33HM5++yzAbjwwgt57bXXKCoq8niuqPJymsXH8/pbb9GlS5caeYw/Est1D7jv8bbwL99wBkk8Mtj7B94tiyOr51MlXQNDVWc1QESLyBnATcDjQcyPJeFegmjatCnr168H4NNPP+XRRx91TrNRX8rKyoiODkwTk7vqKZHa22EOHz7Mqy/9iW/WrkVEOL9HLwYPHcYZzZJ58MEHufLKKykpKWHAgAF88sknDBkyhDFjxjinR//ggw+4//77Wbx4MQC/+MUvnJ+nK0/nOrlzFx8tXVrlXN44lFPAwr94P6D/7MNX+149BSA/80vTzPcqKh/pGhiqOqtPkKnYexx9aYxZIyIdgZD1h7NcgvjkkVP1uQGS0KIDxy5+zPLxx44do2XLlgAUFBQw8lfXc/TYUSowPPvss1x77bUAvPXWW7zwwguICN27d+ftt9+ucp4//vGP7Nmzh5kzZ7J48WLuv/9+UlJS6NWrFzt37uSjjz5iypQp7Nu3j+zsbFJSUpg5cyZ33XUXa9euJTo6mhdffJErr7ySWbNmsXbtWl5++WUAhg0bxoMPPsgVV1xB8+bNmTx5Mh999BFNmzbl3//+N23atGHXrl2MGTOGsrIyBg8eTF0+/fRTrr76apIcVUOX9L+Szz9bQuKNN9P+vL7OqqpfnNuNbzb/SOc+BUAUuY7tO/fncaK0gh25BeTkFVJeUbNuOz4+niuvvBKA2NhYevXqRU5Ojv3/KOFUl9iC/HzMCfejwMsOHWL3r8e7/R2SoztT1qYv4H1nBH+qpwC2UgKlhdzoa1VTgLvY1tcaGNqGEX6sBoj9xpjulW+MMTtF5MUg5cmjcC9BnDhxgh49elBcXMz+/fv54osvAGjSpAlvzZhNQosWlDe1V5eMGDGCTZs2kZGRwapVq0hJSeHw4cNVzvfwww+Tn5/Pm2++ycmTJ7njjjtYuXIlHTp0YPToqp3E1q1bx5dffknTpk35y1/+AsDGjRvZsmUL11xzDdu2basz74WFhVx44YVkZGTw8MMPM2PGDJ544gkmT57MXXfdxfjx45k+ve55FPfu3Uu7dqfWr05Pa8fhg1Wro47lH+WLTz9hwu13Obe9/UYmM197mdLSEuYs+AiAk2Xl7N6dTc+ePUlISODZZ5/lsssuq3Kuo0eP8uGHHzJ58mTntunTp/PiCy9wsvgkn86ZU2d+3Wnz/QeklW0jbdpbXqf1p3oK4JZ/DgFyT03a5Y0gdbGtjzYMFX6sBoj/A3pZ2BZehkwL+CmPWZju27WKafXq1YwfP57vv/8eYwzP/vlZvvrff4mJi2Hv3r38/PPPfPHFF9xwww2kpNjnDEpyaZR95plnuOCCC8jMzARgy5YtdOzYkQ4d7Os6jB492rkPYMSIETRtap8B9csvv+R3v7P30jnnnHNIS0vzGCBiY2MZNmwYAL179+azz+zfgletWsX7778PwK9//Wv+8Ic/1HqO6t8E42OjiY9v4qySKisrY/j427n/vslc2beb87gpj9zPlEfuZ+7cubz1ykvMnj2bkydTWfnNJvqcnca6desYOXIkP/zwg7OUUFZWxujRo/n9739Px44dnee6++67ufvuu5k7dy5/fms2s2fPrpHP6JPFpL3tPgDs/vV4irdsqbWEUZfiJoOJTvZtYkMAWpxuf/naxTZE/Gm/AG3kDkd1BgjHlBgXA61ExLXHUgI+LYzc+Fx00UUcOnSI3NxcFi1axKG8PJZ9vJTWHc8gPT2d4uJijDG1Dp7r27cv69at4/DhwyQlJXkshjdrdmq+o9qOjY6OrrIWs+saFDExMc682Gw2ysrKnPusDvBr27Yty5cvd77PycnhiiuucL6fNGkSnTp14t5773Wb/le/+hV33WUvWcTFxREXZ2//6N27N7/4xS/Ytm0bffr08fpc3khwBElfVBw/xmGTwLzb5/qU/tLSS9iX8I1vbRghar/o1KmT20bqAQMG8OGHH1JaemqKmJiYGAYMGFDjWB3FHX48lSBisVfCRgMtXLYfA0LWtSbcezG52rJlC+Xl5SQnJ5Ofn0+rlBRiYmJYtmyZc3TrgAEDuO6667jvvvtITk52BgOAwYMHM2jQIIYOHcqSJUs455xz2LlzJ9nZ2aSnp/Puu+/Weu3LL7+crKwsrrrqKrZt28ZPP/3E2WefzbFjx3jllVeoqKhg7969fP311x5/j0suuYR33nmHcePGkZWVVeexgwYN4rHHHuPIkSMALFmyhOees0+z9cQTT5Cfn8/rr79eJc327dud00R8/PHHzp/zDuXSpHkiO3IL+Cl7F1u2bkMSWrMjt4AXn3uafQfz+L/n/lqlC272zh9J72i/N/67bIlP00+0vPkmWt58k9fpAA6+9G9+3OT7Urel0Wdw5rFe7GSV12m3UgJC2DRwg7VeTHU1cle2VaSlpWkPqHpWZ4AwxqwAVojILGNMzbH6IRIpbRBg/xY/e/ZsbDYbY8eOZchbQ7hq6EB69+vDOeecA9hXoHv88cfp378/NpuNnj17MmvWLOf5brzxRo4fP86IESNYtGgRr7zyCoMHDyYlJYV+/frVmo/f/va33HnnnXTr1o3o6GhmzZpFXFwcl1xyCR06dKBbt26cd9559Orluabwb3/7G2PGjOFvf/sbo0aNqvPYpKQk/vjHP9K3r319iyeffJKkpCRycnLIyMjgnHPOcV7znnvu4bbbbuPll19m6dKlxMTE0LJlS2eV0KZv/kfGM1OJtkUTZbPx9PN/5bSWSezft5dXXnqeX3TqzLUDLgVg3G8mcfO4ibz9RiarVi7DZovmNJdz1Ze+911LX8+H1Wre7XMhJp43fahiumWWx/nX6p2v7ReVPaAqaQ+o+mdpNlcR6Qw8CKTjElSMMVcFLWcWROJsrkf2HAKgZTvf1ygoKCigefPmGGO4++676dSpU436XHVqBHht3XGDfa/4at7tczlmEkkQ72fALSo5TkGzNUzuu9+3i4dokkF/Z6HVHlDesTqbq9UlR/8JfIt9KdCHXF4qBGbMmEGPHj3o2rUr+fn53HHHHaHOkgqgs7o08yk4AJTGpNK80Mfyy4GNvs9eG2Jz5/rW3qPqZrUXU5kx5tWg5sQLkdQGEQz33XdfWJQYNm7cyK9//esq2+Li4vjf//4XohzVVNcUIbnHTzLlH6trTXttj1TGXFD/qxb6U0X1xsTXORmbyrQffaiCKSnkzKhNeN9vy3/uRnF70wNKG7iDw2qA+FBEfgssBE5WbjTGHK49SfCEextEY9GtWze3I5zDhT8z2G7ab29kDkWA8McZpduxVy7Fe502ruhM9h0KdI6scdfIbWUEN+g63MFkNUBMcPzrWq1kgI5ujlUqLHiawbbkUBzv3tHD7b6b6yhZhLOuUfv5xQ/LaFJ+jtdpl0ZdQlFFaNYqccefZVZVYFgKEMaYDsHOiFLKf/6M34gtMYDxfbBdEBq4/RnBrV1k/Wd1um+31ZLGGO/nIaj9Gh2xTwSYaIwJ7fSlSmGvZvK1JBGq9gt/xm+UTMykJOZMFm7yIX1JIZ0PbqVrCHvZulY1bdiwgQ8//ND5fvfu3dxyyy0sWLCA7t27V0nXqVMnHcFdC6tVTK5tZk2AAcA3QJ0BQkRmAsOAg8aY81y2Dwb+hn009uvGmGnGmJ3Ab0QkMrtRqAbl2h6pPqeN1PaLFkUbyG9q2BrbwvPB1TQtSiP3UBO6BiFfnnTq1MlSyaC0tJQFCxawYMGCKtv96V7b0FmtYqqy7JaIJAJv13K4q1nAy7gEEhGxAdOBq4EcYI2IfGCM2WQxz2Gvoa0H4U7z5s0pKKh9AaHZs2fz7LPPAvbR0xMmTLC0hkMg1oMAmD9/PlOmTLFPN37++V53gxxzQXufH/CR2n7RsWIHeYe+5qvR3j/m231+EfGEpv1izJgxWnUUJL4uGFAEeJy/wBizUkTSq23uB/zoKDEgIu8A1wINJkA0tPUgvHX48GGmTp3KWsd6EL1792bEiBHExcXVy3oQ27dv57nnnmPVqlW0bNmSgwcP1uvvH6laNW1Fq6atfBrBPe3zGWDKQ7YOd/WBcunp6c6pbFylpaWRnZ3tfF9XDyhtw7DeBvEhpyYftgHnAvN9vGYqsMflfQ5wgYgkAxlATxF51BjzXC15mQRMAmjfvu5veH/6+k9sObzFx2y61zauLXedbX3yN10PAq6++moWL17M6NGjLa3hUFhY6HFiwLrWg5gxYwZ3332383Nv3dr9mtTB5E/7BYSuDcPXGWxb2S6lqKnVcbduBHia8oyMDLddZDMyMiyl12k+7Kx+xXzB5ecyYLcxJsfHa7r7yzfGmDzgTk+JjTGZIrIfGB4bG9vbxzwEla4HUXU9iLZt27J3794qx9S6hsOLL1JSUuL8zAB27drl1XoQlb/jJZdcQnl5OVOmTPEY1ALJn/YLCF0bhr89oEpi27Lw8DO+neDwRjpHbQ5YG0blQ9xKCcCfhY6ysrIadAO31TaIFSLShlON1f4MW8wB2rm8bwt4XmTBB3/oV/uaBb7ap+tBeL0eBFSdKtzKGg7PPvsss2fP5owzzuCnn34iOTnZ8noQZWVlbN++neXLl5OTk8Nll13G999/z2mnnVbn7x4o/rRfQOjaMPzpARV30z0Un4Sth32bIqRpUQq5hzoHtJHbShdZX2b6dVXXOtwNoXrKahXTTcDzwHLsJYD/E5GHjDG+9DhaA3QSkQ7AXuBXgFchOJJGUut6EPW/HkTbtm258MILiYmJoUOHDpx99tls377dObusCjx/GrjB0chtKup9DMaYMWPclgCstGF4Woe7UiRXT1mtYnoc6GuMOQggIq2ApUCdAUJE5gFXACkikgM8ZYx5Q0Tuwb7GtQ2YaYz5wZtMR9JcTLoehH/rQeTm5pKUlITNZmPnzp1s377dWVKo7VwjR45k3rx5TJw4kUOHDrFt27YqJZVIEGljMPxp4AaYtnwWlJd6PM6tICyzarUNw5/qqUiYgdZqgIiqDA4OeViYCdYYM7qW7YuARRavHXF0PYjArQexcuVKnnzySaKjo7HZbLz22msezzVo0CCWLFlCly5dsNlsPP/88yT7swRoPWuMYzCwxdpft3zsfdogLLPqTRtGQ2Z1PYjnge7APMemm4ENxpjAV/J7QdeD0PUg/BGu60H4o7LU8e4dF9XrdSt7PtW2xrcn0x6fS9P8JNp38KHH2YGNdE7ZTNc/BH4N+spqVXfPydqqmKzOQhvKEdxW14PwtCb1WUAbY8xDInI9cCn2NojVQN31DEEUSVVMwTBjxgxmz55NSUkJPXv21PUgVFjwtYssQMeTCexJOZ+th72fILppUQq5P6fRNQjtF3V9gfY6znKkAAAgAElEQVR3He5ImKLcUxXTX4HHAIwxC4AFACLSx7FveFBzV4tIaqQOBl0PQtUlFO0X/nSRBeiyYxWJhV/zzggfRnF/cTHxxsdBoX60X3hah7uu6qlImaLc06eabozZUH2jMWatmxHSqpEJ9/UgGqNQtV/400UW7FVU54Bvo7j/45hGJUzaL8DehlEZIFxHbkcaTwGiSR37mgYyI95o7FVMStWmMc4hFcn8LUk89dRTAcqJe54CxBoRud0YM8N1o4j8BlgXvGzVrbFXMSmlAujAxqCMv/Cl/SLceAoQ9wILRWQspwJCHyAWuC6YGVNKKaua5iex8C/feJ/w+N10brqSrmz0Pm2Q2i/CSZ0BwhjzM3CxiFwJVK7n8LEx5os6kgVduFcx6XTfwZ/uG+CKK65g//79zqlFlixZQuvWrdm9eze33nqrc5DdnDlzaNu2bTA/jgYj0gboAeS1y6Zp2QlO+NIDKj+J3NOvpOstPnSRDVL7RTixOhfTMmBZkPNiWbhXMel03/Uz3TfYe4tUTrtR6cEHH2T8+PFMmDCBL774gkcffbTG7LiqplAP0PO1m+zNJ3L5sovw3cVtvE7bbtmlxJ8IWXNq2AvNE6QR0em+gzPdd102bdrESy+9BMCVV17JyJEjfT5XYxLKBm5/usm22J3HdU3P4d6n/egB5asgtV+EiwYdIA78v//Hyc2BXQ+irF07mt5zd53H6HTf9Tfd9y233ILNZmPUqFE88cQTzhXk3n//fSZPnszChQs5fvw4eXl5ETXdRmPjTzdZXwfn+a2bH1W/QZg/KhgadIAIFZ3uu36m+87KyiI1NZXjx48zatQo3n77bcaPH88LL7zAPffcw6xZs7j88stJTU0NWXVbYxKpiyT53MDN+XTudw1dL/Ohai5C2i8i8q/GaiP16Y89FvBrW1kPwpVO9x286b5TU+1/mC1atGDMmDF8/fXXjB8/njPPPNO5MH1BQQHvv/8+iYmJlvKufBOpiyT53cB9Ite3AAH+VU8BnN4NhgR+/ilXERkgwr2R2pVO9x2c6b7Lyso4evQoKSkplJaW8tFHHzFw4EAADh06RFJSElFRUTz33HPceuutHn8/5Z9IXSSp31WdWLTTt4ml/Wrg9qd6qh5FZIAIdzrdd/Cn+y4sLGTQoEGUlpZSXl7OwIEDuf12+/eF5cuX8+ijjyIiXH755R7bTFTjdWPnG7mx840+pfWrgbvPLWHf/gAWp/uuDyLSDHgFKAGWG2M8zhar033rdN/+aIjTfUcqf6Yp93eqcV9Ne9weIB7JiIxBb64CMt13ADIxExgGHDTGnOeyfTDwN+wryr1ujJkGXA+8Z4z5UETeJYTTiYc7ne5bNUS+NnJP3H+MtodzfO7NlDBsmM89qHxv4IbO/dr43n5RT4JdxTQLeBlwhnYRsQHTgauBHOzzPX0AtAXnePfyIOcroul036qh8aeR+9PTz2cQ0MWHtMVb7N3gfQkQee2ysXec9n6Ro0M59lkIGnWAMMasdDMteD/gR2PMTgAReQe4FnuwaAusx8Jypir0dLpvFSh+DdIDZjHYr+opXxxK386qhI84O+lsr9OeffhqzInwH5cTikbqVGCPy/sc4ALg78DLIjIU+LC2xCIyCZgE0L59hK27q5RqMH7Z8Zc+py0qOwEn8gKYm+AIRYBw15neGGMKAY/N+saYTBHZDwyPjY3tHfDcKaWUBSHrAVWPQhEgcoB2Lu/bAl6NPoukcRBKqeDzp4E7uXkcaUHIkyf+NHADpLRrzmU3dQ5gjmoKRYBYA3QSkQ7AXuBXgFf9xMJ9um+lVP3xp4G78GSZ54OCwJ8G7voU7G6u84ArgBQRyQGeMsa8ISL3AJ9i7+Y60xjzQzDzUd90PYj6WQ/i3XffJSMjg/LycoYOHcqf//xnAF588UVef/11oqOjadWqFTNnziQtLRTfEVV98KeB+5N/hmassD8N3JXOSTqHy6h9TrRACHYvptG1bF8E+Da+nfCvYtL1IIK/HkReXh4PPfQQ69ato1WrVkyYMIHPP/+cAQMG0LNnT9auXUt8fDyvvvoqDz/8cJ1TkqjG7fTcn+p9DIU/Ddz1KSKn2oikKiZdDyI460Hs3LmTzp0706pVKwAGDhzI+++/z4ABA5zXAHuJY86cOXX/J6lGa+PZFwCQ5OE4d/wZQ+FPA3d9isgAYbUE8Z/52zi0p/ZqEF80TRK6D6p75SpdDyL460GcddZZbNmyhezsbNq2bcu//vUvSkpKauTljTfeYMiQIXXmVzVe67pfwdutetHljATPB1czcf+fSD5+MiQN3PUlIgekichwEcnMz88PdVbcqqxi2rJlC4sXL2b8+PEYY5zrQVx6TX8GDhxoeT2Io0eP8o9//AMRcbsehKvq60FUjnT2dT2I7OxswL4eROW1qo+ers6f9SB27NjBn/70J2f7ReV6EN9++y0vvvgiY8aMcZbKXn31VW6++WYuu+wy0tPTa1SpzZkzh7Vr1/LQQw/VmV/VeF3bI9Wn4AD2Bu68gpMBzlF4adAliGB0AdP1IDyrr/Ughg8fzvDhwwHIzMzEZrM5z7F06VIyMjJYsWKFM71S1UViA3d90hJEkFldD2L+/Pnk5dlHVrpWMQ0ePJhHHnmEoUOHcvz48SrrQQCW1oMAqqwHkZ6ezvr166moqGDPnj1erQcBWFoPYsmSJRw5coQjR46wZMkSBg0aBJxaD+Kvf/1rlTTbt293/lx9PYjycvvUXK7rQQAcPHgQgCNHjvDKK69w2223AfDtt99yxx138MEHH9C6dXh3I1QqnEVkCAz3Xky6HkTw14MAmDx5Mt99953zGp0720uMDz30EAUFBdx4o70RsH379nzwwQcef0elVFVhsx6EL3Q9CF0Pwh+6HoTyxycDR9Lq593ktvGtmTpq4GAGPXJngHNljdX1ICKyiqmxmzFjBj169KBr167k5+frehBKhUDUwME+B4dWP++mYuniAOco8CKyiimSxkEEg64HoVToDXrkTvCxBPDJwJEBzk1wRGSACPc2iMZC14NQqmGLyAChlFKRrvBkmU8z0FbqcmYCTw3vGsAc1aQBQiml6lly88gYmxORAaKxt0EopSJbmxZxtGkR59MyqfUpIgNEoNsgKkcIB6rLb+V036WlpURHRzNhwgTuvfdeoqJq7zSWnZ3NV199xZgxXi2NoZSKUMVbtvi1Jnbcuedw+mOPBTBHNWk31yConIvphx9+4LPPPmPRokVMnTq1zjTZ2dnMnRsZyxAqpfyTMGwYTRwDZcNa5SRykfjq3bu3qW7Tpk01ttVlzpw5BjCASUtLM3PmzKnz+L1795q9e/fWeUyzZs2qvN+xY4dJSkoyFRUVZv2qdebCvheYnj17mp49e5pVq1YZY4y54IILTEJCgjn//PPNiy++aHbt2mUuvfTSGsepwPH2XlGqoQDWGgvP2JA/5P15+Rsg5syZY+Lj450BAjDx8fF1BglfAoQxxpx22mnmwIEDJmfrbrNv2x5jjDHbtm0zlb/DsmXLzNChQ53HFxYWmhMnTtQ4TgWOBgjVWFkNEBHZBuGvumYlLSoqYty4cYwbNy5gbRJwqn2jrLSMh//4CJu2b8Zms9U6/XZpaSn33HMP69evr/M4pZQKlkYZIOrbzp07sdlstG7dmkem/YFWrVrx3XvvUFFRQZMmTdymeemll2jTpg3fffddnccppVSwRPRkfSkpKSY9PT3U2VBKqYiybt06Y4zx2EkpoksQ6enpVJ/NVSmlVN1E5Bsrx2k3V6WUUm5pgFBKKeWWBgillFJuaYAIIyJSZxdcpZSqTxoglFJKuaUBQimllFsaIJRSSrmlAUIppZRbGiCUUkq5pQFCKaWUWxoglFJKuRU2AUJE2onIMhHZLCI/iMjkUOdJKRUYOsYnMoXTZH1lwAPGmG9EpAWwTkQ+M8ZsCnXGGoNAr8utlIp8YVOCMMbsN8Z84/j5OLAZSA1trpRSqvEKmwDhSkTSgZ7A/0KbE6WUarzCLkCISHPgfeBeY8wxN/snichaEVmbm5tb/xlUSqlGIqwChIjEYA8OWcaYBe6OMcZkGmP6GGP6tGrVqn4zGERZWVnOn9PT06u8V0qpUAibACH2VtI3gM3GmBdDnZ/6lJWVxaRJk5zvd+/ezaRJkzRIKKVCKmzWpBaRS4H/ABuBCsfmx4wxi2pL06dPHxOJS476090vWP9f2ovJO/p5eUc/r/AiIuuMMX08HRc23VyNMV8C2lG6kQnlg0MfWkrVLWyqmBoTY0yVV1pamtvj0tLSahyrlFL1xacAISLNRMQW6Mw0VhkZGcTHx1fZFh8fT0ZGRohypFT40FHYoWMpQIhIlIiMEZGPReQgsAXY75gS43kR6RTcbDZsY8eOJTMz0/k+LS2NzMxMxo4dG8JcKaUaO0uN1CKyAlgK/Bv43hhT4dieBFwJjAEWGmPmBDGvNURqI3VtGmN9fKT+ztp+4R39rMOL1UZqq1VMA40xzxhjNlQGBwBjzGFjzPvGmFHAu75mVinVcOkYn8hlKUAYY0oBROQpT8eoyKN/wMoKX9oCGvMYn4bQduLVOAgRqQCeB5KAb4B3jDFHgpQ3j7SKyX+Vf8BFRUXObfHx8fXWBqJVTJHD0+/s78PQ03kj7bMO53wHuoqpkgGKgU+BdsBXInK+D/lTIVD5jcb1NW7cuCrBAaCoqIhx48ZVOU4p1fh4GyC2GGOeMsa8Z4x5DLgWeCkI+VJKRZjqY3Z0jE/k8zZAHBKR3pVvjDHbgIYzY14D588fsFK+0DE+kc3bAPF7YI6IzBGRP4hIFrArCPkKqcZUrRKIP+DG9HmB/436jenz0jE+Ec7dt0o3RT9x+TkOGAr8AbgNaFb9mPp69e7d2wQD9raWoJw7HK87Z84c57XT0tLMnDlzvErva779va4/fL32nDlzTHx8vDMtYOLj473Ke6j+n/3lT75DldZfkZpvT4C1xsqz39JBsBz4HdC+2vZY4CpgNjDRyrkC+dIAER7X9iVtKB+0Vq/tut/bVzDy7W9af2mAqL+0wWY1QFgdSd0EuBUYC3QAjgJNABuwBJhujFnv8UQBFqxurjqqOPBpgzHFebCv6w8reQrWZx2MtKG6dlZWFuPGjQPs1VMZGRn1Wj3VULtCB3S6b2NMMfAK8Ipj1bcU4IQx5qh/2VSuwvFGaszc/X+kp6eze/fuGtvT0tLIzs6uh1w1HrUNsgMsB4lwfkhHAq9nczXGlBpj9mtwCD/h3PhZvehaX90f3RWb/em5pb1ygsfXMTrhes83BLoehAqJUD5o/bm29spRjYqVhopwfTW0Rmp/+ZPvUKQNVe+pUF87EtOG4vNKS0tz2wEgLS0tqNcNVPpwfo4QyF5M4frSAFFVJD54QvkHGIn5DlUgD0WPs3DoUhyqLz/BFpQAAdwItHD8/ASwAOjlzTkC+dIAUVWkPXhCmTaU1w7ntO6+sVt9BSPfoSzp+Zo+EIEt2KwGCG9nc91gjOkuIpcCzwEvAI8ZYy6wfJIAamjdXP0Vid0nG1u3zXBPG4zuyFavHW5praQP1ucVbMGazbXc8e9Q4FVjzL+xD5ZTSjUA7r5F6nxdjZe3AWKviPwDuAlYJCJxPpyjViIyWES2isiPIvJIoM6rVLiIxMWZAtHjrKEGkQYfUK3UQ7n8QvHA9UAnx/szgGu8OUcd57YBO4CO2Esl3wFd6koTjDaIcG9cqgt+1rf6IlJ7A4Xi2qFudPUnbSj/LiLtHmlIbRABbTT25wVcBHzq8v5R4NG60gQ6QETCf2xd6jtARPIDL9jXdv1MfHmFIs/BTh+K64YqKIb7F02rAcLSVBsictzxy9bY5fjwE6ycx4NUYI/L+xygzsbvvLw8Zs2aVWVb165d6du3L6WlpW6L7z169KBHjx40a9aMm266qcq+f/7zn25Hbt5xxx0sXboUgK+++oqtW7dy6NAhPvrooxrnf+aZZ9i5cyf79+9n8eLFNfYPGDCAdu3asWfPHj7//PMa+wcPHszpp5/Ozp07WblyZY39w4YNIyUlha1bt7J69eoq+yZOnMiCBQsA+P7773HXgH/TTTcRHx/P+vXrWb++5vRZY8eOJSYmhjVr1vDDDz84t69YsQLA+XlffPHFfPfdd7WOdM3MzKRjx47O7f379yc+Pt75mS9dupScnBwmTpzoPG9CQgLXX389AIsXL+bAgQNVzp2cnMzw4cMBeOCBB2jWrBmFhYWkpKQwatQorrvuOgYPHgzAggULOHbsWJX0bdu2ZeDAgQDMnz+/yrUBOnToQP/+/QF7VVBpadVl1jt37szFF18MUCMtVL33Kve7qn6vupo4caLzM09ISHB77KFDh5w/V/7OF110kXPb5ZdfTseOHTlw4ECNe2/16tXYbDbKy8tp27YtQ4cOrZIWPN97ycnJ5OXlub33AK677joSExMDfu9V/yy/+uortm3bVmVbTEyMc7DiihUr2LVrV5W08+fPr3Hvuap+7y1cuLDK/4HrNB8JCQnk5eVVSX/66adXufdc74H+/fvTpk0b57Hz58+v8Xfjzb3n7t6w+twrKipi/vz5NfbXxupcTC0sn9F37roD1AhKIjIJmASQmpoa0AwUFhZ6tb2xC9XnkpWVxfTp0zl58iRw6otCYmKi84801Cr/2F19+umn7N+/v8b25ORk+vfvzwMPPMB5551Hfn4+CxcurHLM6tWreeutt5zvXb8cVX/QV7d69WpmzZpFebm9j8nevXstp20MVqxYwbFjxxg1ahRgD5T/+c9/KCkpqXJc5Zef4cOHk5ycDLj/f25QrBQzXF9AS6AfcHnly9tz1HLekFcxhcPITX/U97Xr6/Nydw2rL3+vHci03lTJ+fM7h+Pn5Q9fr2u1mqehfV5WEKSBcrcBG4EjwDLgBPCFN+eo49zRwE7s04lXNlJ3rStNOLZBhOqmCEWdZ319XuH4BxzOD61w/Lz84ct1/b03I/3LoifBChAbsa8Dsd7x/hzgXW/O4eH8vwS2Ye/N9Lin48OxF1MobopQNq5H6hw9vl47EOr7d24Mn1egg2Ikf1m0IlgBYo3j3/VAXOXP3pwjkK9wnGoj2DdFsL4dBiJP9aUx9jbz53cO1OfVmAKEMZH5ZdGqYAWIhcBpwBRgJfBvYJE35wjkSwNE4wwQxoR/N8K6+Pp5hbrbZTgHiOrCodTUEAKEV3MxuRKR/kAi8IkxptTT8cEQjnMxhWIep1CvctYYl2j1R0OdlyicVK5G59qdND4+3uu1OyLtWWBVUOZiEpEnK19Af6AH9t5GKoR0lTOlqtKFnQLD23mUCl1e5cAQID3AeVJe0j8GpWpyvf+zs7P178EHPlcxATgm6/vAGDMocFmyTquYwuPaje26/orUKqZIFKlTwgeb1SomSyOp6xCPfXI9pZRSLsIxMHjLqwAhIhuxt8yDffbVVsAzgc6UUkqp0PO2DWIYMNzxugY40xjzfwHPVYSKxLn+lVKqNlZnc72/jn0YY14MXJYiU2W3ukqusz9q45hSKhJZrWKqnM31bKAv8IHj/XDsA+YaFavr0FbO/jhu3Lgq2xtC3aRSquGzOt33VAARWQL0MsYcd7yfAvwzaLkLEX2Ae0c/L+/o56UihbdtEO0B10nSS2iE4yDcDUm3ug6tPhyUihyN/W/W2wDxNvC1iEwRkaeA/wGzA5+tyKOjmetfY/zj9ed3boyfl/KPV91cjTEZIrIYuNSx6RZjzLeBz1bkqWyIrmxvSEtLIyMjQxuolVIRy6+R1KEWrJHU/miMI6mVUpEloCOpReRLY8ylInKcUwPlwL6OtDHGJPiYTxVAGhiUUoFktRfTpY5/W3g6VimlVMPg7XTfN4pIC8fPT4jIAhHpGZysKaWUCiVvezH90RhzXEQuBQZh78H0WuCzpZRSKtS8DRDljn+HAq8aY/4NxAY2S0oppcKBtwFir4j8A7gJWORYD8LbcyillKqDiFie0ieYvH243wR8Cgw2xhwFkoCHAp4rpZRSIeftQLkiYIHL+/3Afn8zISLPY5/4rwTYgX0A3lF/z6uUUsp33vZiEhEZJyJPOt63F5F+AcjHZ8B5xpjuwDbg0QCcUymllB+8rWJ6BbgIGO14fxyY7m8mjDFLjDFljrf/Bdr6e06llFL+8TZAXGCMuRsoBjDGHCHwvZhuBT6pbaeITBKRtSKyNjc3N8CX9p9OiKaUaii8aoMASkXEhmO6DRFpBVRYSSgiS4HT3ex63NFdFhF5HCgDal2r0xiTCWSCfS4mr3KvlFLKMm8DxN+BhUBrEckAbgCesJLQGDOwrv0iMgH7mtcDjH4FV0qpkPO2F1OWiKwDBjg23Qh08zcTIjIY+APQ39FTSimlVIhZaoMQkQQReVREXsa+qtwrjrQfYh8b4a+Xsa97/ZmIrBcRnb5DKaVCzGoJ4m3gCLAauA374LhY4FpjzHp/M2GMOcvfcyillAosqwGiozGmG4CIvA4cAtobY44HLWdKKaVCymo319LKH4wx5cAuDQ5KKdWwWQ0Q54vIMcfrONC98mcRORbMDCqlVGOSlXWql396enqV9/XN6opytmBnRCmlGrusrCwmTZrkfL97927n+7Fjx9Z7fiSShxz06dPHrF27NtTZUEopr/k7nbc/z24RWWeM6ePpOF3LQSmllFsaIJRSKgQq521zfaWlpbk9Ni0trcax9UEDhFJKhYmMjAzi4+OrbIuPjycjIyMk+dEAoZRSYWLs2LFkZmY636elpZGZmRmSBmrQRmqllAo7lQ3YwXo+ayO1Ukopv2iAUEop5ZYGCKWUUm5pgFBKKeWWBgillFJuaYBQSinllgYIpZRSbmmAUEop5ZYGCKWUUm5pgFBKKeWW1TWplVJK1ZNwmQIp7EoQIvKgiBgRSQl1XpRSqjELqwAhIu2Aq4GfQp0XpZRq7MIqQAAvAQ8D4VG+UkqpRixsAoSIjAD2GmO+C3VelFJK1XMjtYgsBU53s+tx4DHgGgvnmARMcrwtEJGtHpIkAvkWsufpuLr217YvBThk4dqhZvUzCvU1fD2HN+msHOvPvVLXfr1fAnuNhnC/1LXPn/vF/dqm1blbF7W+X0A34CCQ7XiVYW+HOD0A584MxHF17a9tH7A21J9tID+jUF/D13N4k87Ksf7cK3Xt1/tF7xcv9wX9fgmLbq7GmI1A68r3IpIN9DHGBOLb1IcBOq6u/VavEa7qI/+BuIav5/AmnZVj/blXrF4jnOn94t2xEftsCcslRwMcIEJGRNYaC8v6KQV6vyjv1Mf9EhYliOqMMemhzkOAZHo+RCknvV+UN4J+v4RlCUIppVTohU03V6WUUuFFA4RSSim3NEAopZRySwNEPRKRZiIyW0RmiMjYUOdHhTcR6Sgib4jIe6HOiwpvIjLS8Vz5t4h4HHBslQYIP4nITBE5KCLfV9s+WES2isiPIvKIY/P1wHvGmNuBEfWeWRVy3twvxpidxpjfhCanKtS8vFf+5XiuTARuDlQeNED4bxYw2HWDiNiA6cAQoAswWkS6AG2BPY7Dyusxjyp8zML6/aIat1l4f6884dgfEBog/GSMWQkcrra5H/Cj4xtgCfAOcC2Qgz1IgH72jZKX94tqxLy5V8TuT8AnxphvApUHfUgFRyqnSgpgDwypwAJglIi8SuRPt6ACx+39IiLJIvIa0FNEHg1N1lSYqe3Z8jtgIHCDiNwZqIuF5UjqBkDcbDPGmELglvrOjAp7td0veUDA/thVg1DbvfJ34O+BvpiWIIIjB2jn8r4tsC9EeVHhT+8XZVW93isaIIJjDdBJRDqISCzwK+CDEOdJhS+9X5RV9XqvaIDwk4jMA1YDZ4tIjoj8xhhTBtwDfApsBuYbY34IZT5VeND7RVkVDveKTtanlFLKLS1BKKWUcksDhFJKKbc0QCillHJLA4RSSim3NEAopZRySwOEUkoptzRAqAZLRMpFZL3L6xHPqeqHiLznWO/hf468/SQiuS55Ta8l3bMi8ky1bX1EZIPj589FJDH4v4FqDHQchGqwRKTAGNM8wOeMdgxW8uccXYFnjTHXuWybCPQxxtxjIe1CY0xnl20vAHnGmOdE5DdAijHmT/7kUSnQEoRqhEQkW0Smisg3IrJRRM5xbG/mWKRljYh8KyLXOrZPFJF/isiHwBIRiRKRV0TkBxH5SEQWicgNIjJARBa6XOdqEVngJgtjgX9byOcQEVntyOe7ItLMMWq2WER6O44R4Ebs0z7jOO8Yfz4fpSppgFANWdNqVUyuK20dMsb0Al4FHnRsexz4whjTF7gSeF5Emjn2XQRMMMZchX1lwHSgG3CbYx/AF8C5ItLK8f4W4E03+boEWFdXxkWkNfAIMMCRzw3AZMfuedjn4Kk81z5jzC4AY8whoIWInFbX+ZWyQqf7Vg3ZCWNMj1r2VX6zX4f9gQ9wDTBCRCoDRhOgvePnz4wxlYu3XAr80xhTARwQkWVgn3NZRN4GxonIm9gDx3g31z4DyPWQ94uxrxj2lb2QQCzwpWPfPGCFiDyMPVDMq5Y213GNox6uoVSdNECoxuqk499yTv0dCDDKGLPV9UARuQAodN1Ux3nfxL4YVDH2IOKuveIE9uBTFwEWG2N+XX2HMSZbRPYBlwHXAb2rHdLEcQ2l/KJVTEqd8inwO0e9PiLSs5bjvsS+MmCUiLQBrqjcYYzZh31+/iewrynszmbgLA95+QroLyIdHXlpJiKdXPbPw75AzGZjzIHKjSISBaRQddUxpXyiAUI1ZNXbIKZ5OP4ZIAbYICLfO9678z72hVu+B/4B/A/Id9mfBewxxmyqJf3HuAQVd4wxPwO/Ad4Vke+wB4zOLofMB87jVON0pX7Al8aY8rrOr5QV2s1VKR+ISHNjTIGIJANfA5dUfpMXkZeBb40xb9SStimwzJEmoA9yEZmOfY2AFYE8r2qctA1CKWbxMacAAABaSURBVN985OgpFAs84xIc1mFvr3igtoTGmBMi8hT2xeZ/CnC+vtXgoAJFSxBKKaXc0jYIpZRSbmmAUEop5ZYGCKWUUm5pgFBKKeWWBgillFJuaYBQSinl1v8HQ4DI1ngHzNkAAAAASUVORK5CYII=\n", "text/plain": [ "