{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Performing a classical On/Off analysis" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**In this tutorial you will learn to perform a classical On/Off analysis of the data.**\n", "\n", "We start by importing the gammalib, ctools, and cscripts Python modules." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import gammalib\n", "import ctools\n", "import cscripts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will also use matplotlib to display the results." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And finally we add to our path the directory containing the example plotting scripts provided with the ctools installation." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.environ['CTOOLS']+'/share/examples/python/')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Classical analysis without background model\n", "\n", "### Preparation of the On/Off binned data\n", "\n", "The first step for a classical analysis is to bin the events in bins of energy for an On (signal) region, and one or several Off (background regions).\n", "\n", "We will use the event selection performed in the previous tutorial." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "obsfile = 'obs_crab_selected.xml'\n", "phagen = cscripts.csphagen()\n", "phagen['inobs'] = obsfile\n", "phagen['inmodel'] = 'NONE' # assume that the source is pointlike\n", "phagen['ebinalg'] = 'LOG'\n", "phagen['emin'] = 0.66\n", "phagen['emax'] = 30.0\n", "phagen['enumbins'] = 20\n", "phagen['coordsys'] = 'CEL'\n", "phagen['ra'] = 83.63\n", "phagen['dec'] = 22.01\n", "phagen['rad'] = 0.2\n", "phagen['bkgmethod'] = 'REFLECTED'\n", "phagen['use_model_bkg'] = False\n", "phagen['maxoffset'] = 2.0\n", "phagen['stack'] = True\n", "phagen['outobs'] = 'obs_crab_onoff.xml'\n", "phagen['outmodel'] = 'onoff_model.xml'\n", "phagen.execute()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that we have used the hidden parameter `use_model_bkg` to specify that no background model should be used in the computation of the background normalisation factor, which is simply assumed to be the ratio of the solid angles of On/Off regions.\n", "\n", "Let us peek at the resulting set of On/Off observations." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=== GCTAOnOffObservation ===\n", " Name ......................: \n", " Identifier ................: \n", " Instrument ................: HESSOnOff\n", " Statistic .................: wstat\n", " Ontime ....................: 6313.8117676 s\n", " Livetime ..................: 6313.8117676 s\n", " Deadtime correction .......: 1\n", "=== GPha ===\n", " Exposure ..................: 6313.8117676 s\n", " Number of bins ............: 20\n", " Energy range ..............: 660 GeV - 30 TeV\n", " Observation energy range ..: 660.693448007596 GeV - 100 TeV\n", " Total number of counts ....: 576\n", " Underflow counts ..........: 0\n", " Overflow counts ...........: 1\n", " Outflow counts ............: 0\n", "=== GPha ===\n", " Exposure ..................: 6313.8117676 s\n", " Number of bins ............: 20\n", " Energy range ..............: 660 GeV - 30 TeV\n", " Observation energy range ..: 660.693448007596 GeV - 100 TeV\n", " Total number of counts ....: 772\n", " Underflow counts ..........: 0\n", " Overflow counts ...........: 4\n", " Outflow counts ............: 0\n", "=== GArf ===\n", " Number of bins ............: 61\n", " Energy range ..............: 330 GeV - 36.000002048 TeV\n", "=== GRmf ===\n", " Number of true energy bins : 61\n", " Number of measured bins ...: 20\n", " True energy range .........: 330 GeV - 36.000002048 TeV\n", " Measured energy range .....: 660 GeV - 30 TeV\n" ] } ], "source": [ "print(phagen.obs()[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the instrument is now `HESSOnOff`, to signify that we are dealing with On/Off observations. Since we have no background model the statistic has been set to `WSTAT`. The script has also created a model for the On region." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=== GModels ===\n", " Number of models ..........: 1\n", " Number of parameters ......: 6\n", "=== GModelSky ===\n", " Name ......................: Dummy\n", " Instruments ...............: all\n", " Observation identifiers ...: all\n", " Model type ................: PointSource\n", " Model components ..........: \"PointSource\" * \"PowerLaw\" * \"Constant\"\n", " Number of parameters ......: 6\n", " Number of spatial par's ...: 2\n", " RA .......................: 83.63 deg (fixed,scale=1)\n", " DEC ......................: 22.01 deg (fixed,scale=1)\n", " Number of spectral par's ..: 3\n", " Prefactor ................: 1e-18 +/- 0 [0,infty[ ph/cm2/s/MeV (free,scale=1e-18,gradient)\n", " Index ....................: -2 +/- 0 [10,-10] (free,scale=-2,gradient)\n", " PivotEnergy ..............: 1000000 MeV (fixed,scale=1000000,gradient)\n", " Number of temporal par's ..: 1\n", " Normalization ............: 1 (relative value) (fixed,scale=1,gradient)\n", " Number of scale par's .....: 0\n" ] } ], "source": [ "print(phagen.obs().models())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since we do not have specified any input model the script has placed a point source named `Dummy`, at the center of the On region with a power law spectrum. We will rename this source as Crab. At this point you can also modify the spectral model, e.g., to use more appropriate parameter values or a different spectral shape." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "phagen.obs().models()['Dummy'].name('Crab')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Likelihood fit and residuals\n", "\n", "We can now fit this model to the data." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "like = ctools.ctlike(phagen.obs())\n", "like.run()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's look at the results from the optimisation and the fitted model." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=== GOptimizerLM ===\n", " Optimized function value ..: 15.746\n", " Absolute precision ........: 0.005\n", " Acceptable value decrease .: 2\n", " Optimization status .......: converged\n", " Number of parameters ......: 6\n", " Number of free parameters .: 2\n", " Number of iterations ......: 11\n", " Lambda ....................: 0.0001\n", "=== GModels ===\n", " Number of models ..........: 1\n", " Number of parameters ......: 6\n", "=== GModelSky ===\n", " Name ......................: Crab\n", " Instruments ...............: all\n", " Observation identifiers ...: all\n", " Model type ................: PointSource\n", " Model components ..........: \"PointSource\" * \"PowerLaw\" * \"Constant\"\n", " Number of parameters ......: 6\n", " Number of spatial par's ...: 2\n", " RA .......................: 83.63 deg (fixed,scale=1)\n", " DEC ......................: 22.01 deg (fixed,scale=1)\n", " Number of spectral par's ..: 3\n", " Prefactor ................: 4.61852950191309e-17 +/- 2.97687577951453e-18 [0,infty[ ph/cm2/s/MeV (free,scale=1e-18,gradient)\n", " Index ....................: -2.63298373450669 +/- 0.0795120102122515 [10,-10] (free,scale=-2,gradient)\n", " PivotEnergy ..............: 1000000 MeV (fixed,scale=1000000,gradient)\n", " Number of temporal par's ..: 1\n", " Normalization ............: 1 (relative value) (fixed,scale=1,gradient)\n", " Number of scale par's .....: 0\n" ] } ], "source": [ "print(like.opt())\n", "print(like.obs().models())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The fit has properly converged and the results are consistent with those obtained with the unbinned analysis.\n", "\n", "We will also check the spectral residuals." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAG9CAYAAADeCVr8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8lPW5///XJSIYlIiA1YJO8AfaqiBg3Fp/btgWjyC1boWkbq2p9dhj7XbaqiW0zTn2W1tb69Z4ilgN7liLu9bt61IVeqjgUrFIClUsYA1oREGv7x+zOEkmyez3fc+8n4/HPMi9Xxlm7lzzmc/n+pi7IyIiIiIihdsq6ABERERERCqFkmsRERERkSJRci0iIiIiUiRKrkVEREREikTJtYiIiIhIkSi5FhEREREpEiXXIiIiIiJFouRaqp6ZnWZmS82s08zWmNmVZrZDYluzmbmZnZi2/9aJdXVBxSwiIiLhpORaqpqZfQv4KfAdoBY4CIgBD5jZNond3gR+ZGYDgolSREREokLJtVQtMxsKzAG+7u73uvtmd18JnEQ8wW5M7Hov8H7asoiIiEhGSq6lmn0KGAwsSF/p7m8D9wCfSa4CLgRmm9nAskYoIiIikaLkWqrZCGCdu2/JsO31xHYA3P0PwFrgK2WKTURERCJIybVUs3XACDPbOsO2XRLb010AnE+8tVtERESkByXXUs2eAt4DvpC+0syGAEcDf0xf7+4PAK8AZ5crQBEREYkWJddStdy9g/iAxl+b2VQzG5gor3cLsBq4LsNh5wPfLVuQIiIiEilKrqWqufv/AX4AXAxsAJ4GVgFT3P29DPs/ATxT1iBFREQkMszdg45BRERERKQiqOVaRERERKRIlFyLiIiIiBSJkmsRERERkSJRci0iIiIiUiSZJs+IjBEjRnhdXV3QYYiI5Gzx4sXr3H1k0HEUwswGA48Bg4j/PbnV3Wf3tr/u2SISZdnetyOdXNfV1bFo0aKgwxARyZmZtQcdQxG8Bxzp7m+b2UDgcTO7x93/lGln3bNFJMqyvW9HOrkWEZHgeLyW69uJxYGJh+q7ikhVU59rERHJm5kNMLMlwD+BB9z96W7bm8xskZktWrt2bTBBioiUkZJrERHJm7t/4O4TgdHAAWa2T7ftre5e7+71I0dGuou5iEhW1C1EpEps3ryZ1atXs2nTpqBDqSqDBw9m9OjRDBw4MOhQSsrd3zKzR4CpwLKAwxERCUyokmsz+zxwDLATcLm73x9wSCIVY/Xq1Wy//fbU1dVhZkGHUxXcnfXr17N69WrGjBkTdDhFZ2Yjgc2JxHpb4CjgpwGHJSISqJIn12Y2F5gG/NPd90lbPxX4FTAA+B93v8jdfw/83syGARcDkU+u58+fz/Lly3M+bty4ccyaNasEEUm12rRpkxLrMjMzhg8fTgX3Nd4FuNbMBhDvZnizu98ZcEwiIoEqR8v1POAy4HfJFYkb8eXAZ4DVwLNm9gd3fyGxywWJ7ZGXT2JdyHEifVFiXX6V/Jy7+3PApKDjEAmT5Hs+XkxHqlHJk2t3f8zM6rqtPgB4xd1XAJjZjcAMM3sRuAi4x93/XOrYymn27F7nVehhzpw5Gde3tbVx/vnn8/e//53ddtuNlpYWGhoaihWiiIiIiBQoqGoho4BVacurE+u+TrzP3glmdlamAyuhrFNbWxtmhplRV1dHW1tbVsc0NTXR3t6Ou9Pe3k5TU1NWx4qEhZnxpS99KbW8ZcsWRo4cybRp03I6T11dHevWrSt4HxERkWILakBjpu9J3d0vBS7t60B3bwVaAerr6yPzncvJv3kKgPan72NR20Wp9e3t7Zx6xpf59R+XEzvwcwDsBTQ3N9Pc3NznOTs7O2lsbKSxsTG1Tl9DSZgNGTKEZcuW8e6777LtttvywAMPMGrUqKDDEhERKZqgkuvVwK5py6OB17I92MymA9PHjh1b7LhKIp4kN/e6/YP33+Ppa+bw9DWZu4OIVJKjjz6au+66ixNOOIEbbriBmTNn8n//7/8F4M033+SMM85gxYoV1NTU0NrayoQJE1i/fj0zZ85k7dq1HHDAAV0+RF5//fVceumlvP/++xx44IFcccUVDBgwIKhfT0REqlxQyfWzwDgzGwP8A/gikHVpDHdfCCysr68/s0TxBa65ublLP+26ujra23tOaR+LxVi5cmUZI5NK0Fu//kJlM7bgi1/8Ij/60Y+YNm0azz33HGeccUYquZ49ezaTJk3i97//PQ899BCnnHIKS5YsYc6cORxyyCH88Ic/5K677qK1tRWAF198kZtuuoknnniCgQMHcvbZZ9PW1sYpp5xSkt9PRESkP+UoxXcDcDgwwsxWA7Pd/bdmdg5wH/FSfHPd/flSxxKU9EQ5myQ5mfikJ0D77bcfr732Gps3b06tGzhwIPvtt1+X/VTCT8JuwoQJrFy5khtuuIF/+7d/67Lt8ccf57bbbgPgyCOPZP369XR0dPDYY4+xYMECAI455hiGDRsGwB//+EcWL17M/vvvD8C7777LTjvtVMbfRkREpKtyVAuZ2cv6u4G7S339sGlpaaGpqYnOzs7UupqaGlpaWlLLGweNYPv3ug7EmjBhAhBPJjo6OqitrWXKlCmp9UmZSvi1tbWl+mXHYjFVGZGcqteUwrHHHsu3v/1tHnnkEdavX59an2nMQLKsVaaSdu7Oqaeeyn//93+XLlgREZEchGqGxmxFrc91umRS21dJvVXDJgNw01cPzuncmb7qT1YZSUpWGUmPRaTczjjjDGpraxk/fjyPPPJIav2hhx5KW1sbF154IY888ggjRoxg6NChqfUXXHAB99xzD//6178AmDJlCjNmzOC8885jp5124s0332Tjxo3EYrGAfjMREal2kUyuo97nuqGhod/E9oXXN6QqjGRLVUYkKkaPHs25557bY31zczOnn346EyZMoKamhmuvvRaIt7TPnDmTyZMnc9hhh7HbbrsBsNdee/GTn/yEz372s3z44YcMHDiQyy+/XMm1iIgEJpLJdaWbMVGlyaQyvf322z3WHX744Rx++OEA7Ljjjtxxxx099hk+fDj3339/avmSSy5J/XzyySdz8skn9zhGA31FRCQIkUyuo9wtJBuzDtyNWQfulvNxc+bcryojIiIiIgGKZHIdRLeQ+fPnZxwsGEbFqjKigZAiIiIiuYlkch2EQhLrjYNGFDGSvq9TrCojGggpIiIikjsl1znqXsKsv9bdXAclFqKQKiMaCCkiIiJSuEgm10H2uU5Pltufvo9FbRd9tNzezqlnfJlf/3E5sQM/B8Srfuy1y9CyxZdvlRERERERKVwkk+ugSvHFW3ab+9zng/ff4+lr5vD0NR/1Z/7+n3oOKCyFQqqMFHsgZHLCD7Vsi1QuM9sV+B2wM/Ah0Oruvwo2KhGRYEUyuY6afCp/5HudfKuMxP8t3kDIpLq6Og2ElJQ1a9bwjW98g2effZZBgwZRV1fHL3/5S/bYY4+sjt9uu+0ylvOTwGwBvuXufzaz7YHFZvaAu78QdGCSGzWIiBTPVkEHECXNzc24e+rR20QVsVisy35hl2nA5YQJE5g+fXpquba2lunTp+c9EDI94Zbq5O4cd9xxHH744fztb3/jhRde4L/+67944403Uvt88MEHAUYouXL31939z4mfNwIvAirULyJVTS3XBWhpaaGpqYnOzs7UupqaGlpaWgKMKncaCCnl8PDDDzNw4EDOOuus1LqJEyfyyCOPcMQRR7DLLruwZMkSXnjhBT7/+c+zatUqNm3axLnnntvlA9u3vvUtHn74YYYNG8aNN97IyJEjg/h1pBszqwMmAU93W98ENAGpmTVFRCpZJJPrsEwik+zqUAm1oDUQsrrMWfg8L7y2oajn3OvjQ5k9fe9ety9btoz99tsv47ZnnnmGZcuWMWbMGADmzp3LjjvuyLvvvsv+++/P8ccfz/Dhw3nnnXeYPHkyP//5z/nRj37EnDlzuOyyy4r6e0juzGw74DbgG+7e5YXl7q1AK0B9fb0+VYtIxYtktxB3X+juTbW1tUGHQkNDQ6r7x8qVKyOZWM+YOCrviiaV2lVGyuuAAw5IJdYAl156Kfvuuy8HHXQQq1atSnU/2mqrrVJTnTc2NvL4448HEq98xMwGEk+s29x9QdDxhJGZpfo0i0jli2TLtRRXoQMh0xXaVUaDasqjrxbmUtl777259dZbM24bMmRI6udHHnmEBx98kKeeeoqamhoOP/xwNm3alPE4JSzBsvh/wG+BF939F0HHIxI0DegXiGjLtYTLnDlzUo9XXnmFqVOnprbV1tYydepUXnnllS77zZ8/v8d5ut+UNAiyshx55JG89957XH311al1zz77LI8++miX/To6Ohg2bBg1NTW89NJL/OlPf0pt+/DDD1MJ+vz58znkkEPKE7z05tPAl4AjzWxJ4vFvQQdVCdTaHT0a0C9JarmWvGWabh3ilUa6VxXpTtOtVx8z4/bbb+cb3/gGF110EYMHD6auro7Pf/7zXfabOnUqV111FRMmTGDPPffkoIMOSm0bMmQIzz//PPvttx+1tbXcdNNN5f41JI27Pw4oA5SqlM2HHw3or05KriVvqjIiufr4xz/OzTff3GP9mWd+NB/UoEGDuOeeezIen6xx/eMf/7g0AYqIiBQoksl1WKqFiKqMiIiEicatlE/357jQmY2lckSyz3WYqoVUM1UZERERiWtpaaGmpqbLunLMfaH++eETyZZrCYewTLeulhoRkWDo/vuRSpr7QgoTyZZribZiT7eepAojIiLRUKmtremJdFTnvpDCqeVayq6QgZDpVGFEREREwkbJtQQi34GQ/VUZUYURERGR/qlLT+moW4iUXSEDISXaBgwYwMSJE9l3332ZPHkyTz75ZF7nOe2003qd7TFo2223XdAhiIhIgNRyLWVXyEDI5uZmZs+eDajsURRtu+22LFmyBID77ruP73//+z1maCy1LVu2sPXWuvWJiEhpRPIvjOpcV7dk3+tCKoxI8DZs2MCwYcOA+OQwM2bM4F//+hebN2/mJz/5CTNmzADgd7/7HRdffDFmxoQJE7juuuu6nOfCCy9k1apVzJ07l3vvvZdvfvObjBgxgsmTJ7NixQruvPNOmpubee2111i5ciUjRoxg7ty5fO1rX2PRokVsvfXW/OIXv+CII45g3rx5LFq0iMsuuwyAadOm8e1vf5vDDz+c7bbbjnPPPZc777yTbbfdljvuuIOPfexjvPrqq8yaNYstW7YwderU8j6JIiISOpFMrt19IbCwvr7+zH53lorRfbr1ZCWRBQsWAPEKI1OmTOm3wogA93wP1iwt7jl3Hg9HX9TnLu+++y4TJ05k06ZNvP766zz00EMADB48mNtvv52hQ4eybt06DjroII499lheeOEFWlpaeOKJJxgxYgRvvvlml/N997vfpaOjg2uuuYb33nuPr371qzz22GOMGTOGmTNndtl38eLFPP7442y77bb8/Oc/B2Dp0qW89NJLfPazn+Xll1/uM/Z33nmHgw46iJaWFr773e9y9dVXc8EFF3Duuefyta99jVNOOYXLL78812dNREQqTCSTa6lOvVUZSQ7KeOutt3oc073CiAQrvVvIU089xSmnnMKyZctwd37wgx/w2GOPsdVWW/GPf/yDN954g4ceeogTTjiBESPi5Rt33HHH1Ll+/OMfc+CBB9La2grASy+9xO67786YMWMAmDlzZmobwLHHHsu2224LwOOPP87Xv/51AD7xiU8Qi8X6Ta632WYbpk2bBsS/NXnggQcAeOKJJ7jtttsA+NKXvsR//ud/FvYkiYhIpCm5FqlG/bQwl8PBBx/MunXrWLt2LXfffTdr165l8eLFDBw4kLq6OjZt2oS791oLd//992fx4sW8+eab7Ljjjv2OeB8yZEjq59723Xrrrfnwww9Ty5s2bUr9PHDgwFQsAwYMYMuWLaltlVivV0RE8qPkWiIlUwm/k66KV5zIVNpvr7JEJfl46aWX+OCDDxg+fDgdHR3stNNODBw4kIcffjg1UHXKlCkcd9xxnHfeeQwfPjyVSANMnTqVz33ucxxzzDHcf//9fOITn2DFihWsXLmSuro6brrppl6vfeihh9LW1saRRx7Jyy+/zN///nf23HNPNmzYwBVXXMGHH37IP/7xD5555pl+f49Pf/rT3HjjjTQ2NmoSIxERUXIt0TFj4qigQ5ACJftcQ7z1+Nprr2XAgAE0NDQwffp06uvrmThxIp/4xCcA2HvvvTn//PM57LDDGDBgAJMmTWLevHmp85144ols3LiRY489lrvvvpsrrriCqVOnMmLECA444IBe4zj77LM566yzGD9+PFtvvTXz5s1j0KBBfPrTn2bMmDGMHz+effbZh8mTJ/f7O/3qV79i1qxZ/OpXv+L4448v7AkSCUD3mW41ZbdIYSzKxcPr6+t90aJFZblWsu9usgycRIP+3z7y4osv8slPfjLoMErq7bffZrvttsPd+fd//3fGjRvHeeedF3RYGZ97M1vs7vUBhVQUZjYXmAb809336W//ct6zwySfyTryneAj1+OSM912dnam1tXU1NDa2ppVgl2uOKOk3L+b/g/KJ9v7tlqupSrkM7BRJfyi5+qrr+baa6/l/fffZ9KkSXz1q18NOqRKNw+4DPhdwHFIlrIZH6CZbkUKo+RaKlr38n3pktOo9zadukr4Rc95550XipbqauHuj5lZXdBxiIiEiZJrqWi9le+Dj5LqTF1GVMJPRIohbP2Zu7dAa6ZbkeJTci0VL1OFkXS5VhmJSn86kTAwsyagCWC33XYr9rmB8L43kv2Zk9rb21PLYRkw2NLSkrHPdUtLS4BRiUTbVkEHkA8zm25mrR0dHUGHIiE3Y+Io9tplaI/17U/fl/r5zh8c12VZRIrH3Vvdvd7d60eOHBl0OCVlZl0ejY2NXZJW+Kg/c3KfTLq3dpeyxGNDQ0OXyZZisVjWgxlFJLNItlxr+nPJ1qwDd2PWgV1by9ra2mi66Wep5c4332DpTT/j61PGpf6gzJlzf1njDKuwtwyKVJogWrsbGhpSgxfVFUSkcJFMrkVyke/o+Obm5h59r5977rnUzzvssANTpkxhwoQJXfYpZpWRsPXXLNSAAQMYP348mzdvZuutt+bUU0/lG9/4Bltt1fuXaCtXruTJJ59U5ZYQMrMbgMOBEWa2Gpjt7r8NNqrg5NOfuZjVOyrtfiESVZHsFiIShOeee46FCxemljs6Oli4cGGXhBuKV2Wktxascs0CWIqvprfddluWLFnC888/zwMPPMDdd9/d7+DRlStXMn/+/IKvXe3MbIiZDSjmOd19prvv4u4D3X10NSfWmbS0tFBTU9NlXan6Mwd9v5BglLMLkeTA3SP72G+//bxcmpubvbm5uWzXk9KJxWIO9HjEYrHUPidd9WTGfbJ55Ps6yfd62XrhhRey3vf666/3mpqaLtepqanx66+/Pp9fLWXIkCFdlv/2t7/5jjvu6B9++KG/+uqrfsghh/ikSZN80qRJ/sQTT7i7+4EHHuhDhw71fffd13/xi1/0ul+YZXrugUVewvsj8caTWcBdwD+BVYl/nwd+Bowr5fUzPYp9z871PRCE66+/vss9pr/3UDb3J/fi3y/yeS5z/d0KvZ50Veh9Wv8Hucv2vh14glzIQ8m15CObG1K1JtfFvmZ33ZNrd/cddtjB16xZ4++8846/++677u7+8ssve/L9/fDDD/sxxxyT2r+3/cIsoOT6UeBCYAKwVdr6HYHjgduAxlLG0P1Rjcm1e25xZpswBZ1cRymxi8rrpD9B/59L9vdt9bmWqpPsg5jsvxiLxTL2Tdxn9r1dKo3c+YPj6HzzjR7nq9nxY0z7r9sB2GtN/gMh4+/bj1RL/dnk771582bOOecclixZwoABA3j55Zcz7p/tfsJR7r65+0p3f5N4Yn2bmQ0sf1jSl2zvT+W+X1Rj33AN6JZ8qc+1VKX0G/nKlSt73NgzlfAbP+MsBmwzqMu6AdsMYvyMs7K6Zl+ltzIpZ3/NpOSn7lgslnF7LBYr6h+aFStWMGDAAHbaaScuueQSPvaxj/GXv/yFRYsW8f7772c8Jtv9ql0ysTaz2f3tI+HS3/0pkyDuF/lQ3/D8dW8d7e8+nXxI+Sm5Fslg1oG7cdNXD+7y+NPcZq6d+9F4rVgsxrVzf8uf5jan9immIOvPluMP9dq1aznrrLM455xzMDM6OjrYZZdd2Gqrrbjuuuv44IMPANh+++3ZuHFj6rje9pNezTazn5rZ1Wb2NTMbFnRAUnylvl/km9jlU/s7l0aIalbIfVoDIUtLybVIDvJpUYrS9dKvW4o/1O+++y4TJ05k77335qijjuKzn/1savr5s88+m2uvvZaDDjqIl19+mSFDhgAwYcIEtt56a/bdd18uueSSXveTXjmwCbgP2BV40sz2DTYkKYVy3i+i0lJeyfK9T+vbg9KzKH9lUF9f74sWLSrLtZLlwpKJgFSvvvrh9fU6ybf/XrH6/b344ot88pOfDOTa1S7Tc29mi929vtTXNrPn3X3vtOU9gKvc/chSX7u7Yt+zo/L6zCfOct8v8jmura2t377h3QUxliToe2+p9RdnPt8EFPt3jspz2Z9s79sa0ChSAkFPPlMsUb8RCgDrzGw/d18M4O4vm1llz0MuZZHPzI4tLS00NTV16RqiFm+pNOoWIpKjvgaJbBw0ose6Qief0aAUKdB/ANeb2fVm9p9m1ga8GnRQUp2CHEtSrfLpLy+FUcu1SBGtGjaZm8/6VL/7bd68mQULFrBgwYLUuubm5hJGFpccYCTlE9QfKjOzRGnWv5jZROAoYB/gYeCG9H0CCVCqVj4t3lI8+vag9JRcl9qia2DprbkfN/4EqD+9+PFISc2YOIqbgw6iF4MHD2b9+vUMHz5cCXaZuDvr169n8ODBQVz+YTO7DbjD3f9OfKbGu8xsG+AQMzuVeKI9L4jgRCQY2dZSl/wpuS61pbfCmqWw8/jsj1mzNP6vkuvImXXgbszKY3KH7n20S2H06NGsXr2atWvXlvxa8pHBgwczevToIC49FTgDuMHMxgBvAYOBAcD9wCXuviSIwEQkWPr2oLRCk1yb2e7A+UCtu58QdDxFtfN4OP2u7Pe/5pjSxSJll8tXcPkk2dkOhBw4cCBjxozJ+fwSTe6+CbgCuCIxE+MI4F13fyvYyEREKltJBzSa2Vwz+6eZLeu2fqqZ/dXMXjGz7wG4+wp3/3Ip4xEJQjYDeDINhMxWbwMh86EJHCqTu29299eVWIuIlF6pW67nAZcBv0uuMLMBwOXAZ4DVwLNm9gd3f6HEsYgEpr+v4FYNmwyQ8yyP5ehOIiIiItnLueXazIaZ2YT+9wR3fwx4s9vqA4BXEi3V7wM3AjNyuH6TmS0ys0XqOyoiIiIiYZJVcm1mj5jZUDPbEfgLcI2Z/SLPa44CVqUtrwZGmdlwM7sKmGRm3+/tYHdvdfd6d68fOVLzIIiIBClTN79ySJ+qua6uTlM3i0hoZNstpNbdN5jZV4Br3H22mT3X71GZZerQ6e6+Hjgrz3OKRN4Lr2/g5N88ldMxe5UoFqkcZnYicK+7bzSzC4DJwE/c/c9FOHcg3fza2tpoampKLbe3t6eWVU4sPyp3LlI82SbXW5vZLsBJxCt6FGI1sGva8mjgtVxOYGbTgeljx44tMBSRcJgxcVRBxxejykj3lkDVPa0YF7r7LWZ2CPA54GLgSuDAIpw71c0PwMyS3fwyJtfr169n3rx5Xdbtvffe7L///mzevDlj6/PEiROZNGkSNTU1nHTSSQDccsstXarvAHR2dvLVr36VBx98MLXusMMO4+CDD2bPPfdk3bp13HnnnT3Of+ihh7L77ruzZs0a7r333h7bp0yZwq677sqqVav44x//2GP71KlT2XnnnVmxYgWPPfZYj+3Tpk0DYI899ujxuwMcd9xx1NbWsmzZMhYtWpRaf9ppp6V+r5qaGpYsWcKSJT0rJzY0NDBw4ECeffZZnn/++dRxyWsll5988klefvnlLscOHDgw9R5/9NFHefXVrhN3pj/nDz74IKtXr+6yfejQoamf7733XtasWdNl+/Dhw5k+fToACxcuZP369V1+v/T9FyxYwIYNG7ocP3r0aI466igAbr755h7/52PGjOGwww4D4vevzZs3d9m+xx578KlPfSp1vXxee0uWLKGzs5Obb+45g0F9fT377LMPHR0d3H777T22l+u1t/vuu3PooYf2+P2mTZvGiBEj+Otf/8pTT/VsuBk6dCgbNmzo8dpLOumkk3J67XWX/trr/rosxmvvC1/4ApD7aw9g5513ZurUqUB+r73+ZJtczwHuAx5392cTZfPyLVHwLDAuUXf1H8AXgf7riKVx94XAwvr6+jPzjCH81izNrySfJp8Jrb5ahmYduBuzDtwt53N++6I/s/176/KKJ73KiFoCK9oHiX+PAa509zvMrLlI587Uza9L0m5mTUATwKhRhX2ITHrnnXdyWi8iUk6WzVdBZvZpd3+iv3UZjrsBOJx4fdU3gNnu/lsz+zfgl8QnM5jr7nnNuVlfX++ZPm2VQrJlcPbs2bkdmEyQc6lzne+sjsnJanK5lkRashtJPlVG8pluvbf7RbJ8n75azp6ZLXb3+jJc507iDRlHAfsB7wLPuPu+RTj3icDn3P0rieUvAQe4+9cz7V+se3Y2EzOFST7vj3zfU+V+L5Y7zkp+LvMVhd8vKs9lf7K9b2fbcv1r4v30+lvXhbvP7GX93cDdWV67h0C7heTampzr7IwQb3nOp/VZk8+ISE8nEZ+t8WJ3fyvRxe87RTp3wd388pHLxExhEPWEQkRy02e1EDM72My+BYw0s2+mPZqJtzoHwt0XuntTbW1tUCFkb+fx8a4aIiHT3NyMu+PuxGKxjPvEYrHUPkoQosndO919gbsvTyy/7u73F+n0qW5+ZrYN8W5+fyjSuXuVzcRMIqCqMhKM/lqutwG2S+y3fdr6DUB1Zoxh73KhvtqSh6i1BEr/zGwjkOkTkRGv0DQ0w7acuPsWMzuH+JicZDe/niObSqC/iZmiTh9mC6fgVzaiAAAgAElEQVSxJBKUPpNrd38UeNTM5rl7zw5uEi75tpCvWRr/V8l1JBWjhF/yD00yWYnFYqoWEnHuvn3/exXlOgV18xMplmS/3r50dnbS2NiYutdB5g8yqp4khci2z/UgM2sF6tKPcfcjSxFUf1SKrxeF9NVWi3ckFVrCL12ltwRWMzMbBowDBifXJWbQFZFu1OIthco2ub4FuAr4Hz4q6xSYqijFV05q8Y6sfEv4zZlTrC63auEJu8TkX+cSH2y4BDgIeAoIpHEkDCqlckEmlfg7Zav7755tVZlitniLQPbJ9RZ3v7KkkUhwVJ2kavU2+Uxv6zNNPKMWntA7F9gf+JO7H2FmnyA+d4FIRauWsSRhT/KrsQGmz2ohaRaa2dlmtouZ7Zh8lDQyESmZjYNG5HVcQ0MDZpZ6NDY2Zpwpr7Gxsct+EqhN7r4JwMwGuftLwJ4BxyQVIsyVhLKtKpNeEUnVk4qrtwaYSq/akm3L9amJf9Nrozqwe3HDyY76XIv0r6+vvlcNi5eo7z75THJimUyTJeUzxbqEwmoz2wH4PfCAmf2LMtSiFulLuZLTfMaSVEuLdymoi01cVi3X7j4mwyOQxDoRT3TqXItUkPTa2GrhiQZ3P87d33L3ZuBC4LfAjGCjEgkv1VGXQmXVcm1mp2Ra7+6/K244IhIlauEJPzP7YYbVE4EflTsWkaiohupJpWj4yHdQaaXJtlvI/mk/DwamAH8GlFyLRFRf9bEzre9eGxtUHzsi3kn7eTAwDXgxoFhEpIpUawNMVsm1u389fdnMaoHrShKRVL5F18DSW/M7VnW1i6K3+tgnXfVkzueqhhaeKHP3n6cvm9nFlGGKchGRam2AybblurtO4hMSBEIDGiNu6a3xGtk7j8/tONXVLpp86mMna2P3NbAx2xJ+EqgaAhqMLiLVpxobYLLtc72QeHUQgAHAJ4GbSxVUfzSJTAXYeTycfldux6iudqA2DhrB9u+ty+vY5cuXFzkayZaZLaXr/Xsk8OPgIoquSp58RkSKJ9uW64vTft4CtLv76hLEIyIh1Vv5PlAJv5CblvbzFuANd98SVDAiIpUu2z7Xj5rZx/hoYKOaoURCrBpnxJKuzOybfWzD3X9RznhERMol6G+ZsqpzbWYnAc8AJwInAU+b2QmlDExE8lOtM2JJD9snHvXA14BRicdZZC7+IiIB0oy2lSPbbiHnA/u7+z8BzGwk8CCQZ8kHqRhrlubeFzqfwYzSq3LOiNVX+T7IvoSflJ67zwEws/uBye6+MbHcDNwSYGgiIhUtq5ZrYKtkYp2wPodji87MpptZa0dHR1AhCMTL4uWTJO88Pn6sRMqMiaPYa5ehQYchudsNeD9t+X2grtCTmtmJZva8mX1oZvWFnk9EpFJk23J9r5ndB9yQWD4ZuLs0IfVP1UJCov50lcULgXLNiNVX+b6bz4r/m2mwY7KEnwTmOuAZM7udeNWQ44Bri3DeZcAXgN8U4Vwi/dJYEomKPpNrMxsLfMzdv2NmXwAOAQx4ClAHTpEQCuuMWPlUDVF97MK5e4uZ3Uv8/g1wurv/bxHO+yJk1y1JpFC9jSUBlGBL6PTXcv1L4AcA7r4AWACQ+Arwl8D0kkYnIjkLYkasvvpvqz528Nx9MbA46DhEspXPWBLVH5ew6C+5rnP357qvdPdFZlZXkohE+pLPAMoqnDI9TDNi9VUfuy99tXQHXWYpCszscXc/xMw28tEkMhD/9tHdvd8O9Gb2ILBzhk3nu/sdWcbRBDQB7LZbbrOC9kf//yISRv0l14P72LZtMQMR6Vc+gyA1ZbpUKXc/JPHv9gWc46gixNEKtALU19crG5aslGssiUgp9JdcP2tmZ7r71ekrzezL6CtGKbd8BlBqynSpcmZ2InCvu280swuAycCPi9HvWqRcwjqWREorqt9S9pdcfwO43cwa+CiZrge2IT7iXESkX/3Vx85E9bGL5kJ3v8XMDgE+B1wMXAUcWMhJzew44NfASOAuM1vi7p8rONoSU8WJaApiLIlIvvpMrt39DeBTZnYEsE9i9V3u/lDJI+uDmU0Hpo8dOzbIMEQkCzMmjgo6hGr3QeLfY4Ar3f2OxEQyBXH324HbCz1POaniRLSFaSyJSF+yqnPt7g8DD5c4lqypzrVIdPRVH7svqo9dNP8ws98ARwE/NbNBBDgJWDmVc/ZSEZGkbCeREYmufCqMQFVWGQmjvqqG9LZN9bG7OAmYClzs7m+Z2S7AdwKOSaRs9GFJyq0qWi+kiuU7RfuapbD01uLHI1nbOGhE3seqPvZH3L3T3Re4+/LE8uvuXhVfC7h7l0csFsu4XywW67KfCKDXg+RNLddS2fKdov2aY9TiHbC+6mM3NzcDMHv27B7b8pkJspJZvG9EA7C7u//IzHYDdnb3ZwIOrexUcUJEykEt1yKZqMVbKscVwMHAzMTyRuDy4MIJTkNDA62tranlWCxGa2urBjOKSFGp5Vokk0JavEXC5UB3n2xm/wvg7v8ys22CDiooqjghIqWm5FpEQqu/+tiZtiXrY+fTPaRCB0JuNrMBJKZAN7ORwIfBhiQi1aTa+q6rW4iIhNKMiaPYa5ehPda3P31f6uc7f3Bcl2WA132HvK9ZoQMhLyVej3onM2sBHgf+K9iQREQql1quRSSUMtXHbmtro+mmn6WWO998g6U3/YyvTxmX6jd78m/gX2QeCNmXSh0I6e5tZrYYmJJYdSKQx4CC6qaZHUUkW2q5FpHQMrMuj8bGxi6VHuCjSUCS+9x81qcCijZczGyomX3fzC4DdiM+sHErYCHx2teSpd5mdkxPuEVEkiKZXJvZdDNr7ejoCDoUkdBSjdaqdx2wJ7AU+ApwP3ACMMPdZwQZWNjl86Eum9kgRXrT/ZsRfXDLXxiey0gm1+6+0N2bamtrgw5FREoon0lATrrqyTJHGVq7u/tp7v4b4mX46oFp7r4k4LhEJE2UvhkJ+wfJsDyXkUyuRaQ6tbS0UFNT02WdJgHp1ebkD+7+AfCqu28MMJ7I0MyOUkr6ZqR4wvpcKrkWkcjQJCA52dfMNiQeG4EJyZ/NbEPQwUWJPtSJSC5ULUQkyhZdk/+MkBGdpj2bSUD6q4+dyV797xIp7j4g6BgqRfLDW/J1F4vFVC1E8tb9W466ujra29t77BeLxTTRUT/C+lyq5VokypbeGp9yPVcVPE17b/WxRQqRnkivXLlSibUUjb4ZKZ6wPJdquRYJg3xboNcshZ3Hw+l35XZcBU/Tnqk+djbmzLk/8W9+9a5nz56d13FRZWY/A6YD7wN/A05397eCjUokevTNSPGE5blUy7VIGOTbAr3z+Hj3DinYxkEjgg4hah4A9nH3CcDLwPcDjkcksvTNSPGE4blUy7VIWOTTAi1Fs2rYZCD3mR2rlbvfn7b4J+I1tEVEiiLKs6Kq5VpERAp1BnBPpg1m1mRmi8xs0dq1a8sclohEUVjqVedLLdciIpKRmT0I7Jxh0/nufkdin/OBLUDGv3ru3gq0AtTX16sYtBRE9cQrUza1p5P1qpP9qSG8rwcl1yIikpG7H9XXdjM7FZgGTPGw/pUTESkzdQsREZGcmdlU4D+BY929s7/9RUR6U2mzoqrlWkQkIZ/JZwD2+vhQZk/fuwQRhdplwCDggcRXun9y97OCDUlEKkFLSwtNTU1dpjKPUu1vJdcixbZmae51pJP1qiUwMyaOCjqESHH3sUHHICKVKSz1qvMVmuTazIYAVxCfkOARd4/GkFCRdPnWnFa96sDlO/mMiIgUX0NDQyq5jto08CVNrs1sLvHBLv90933S1k8FfgUMAP7H3S8CvgDc6u4Lzewmehl5LhJq9afHHyISWmHuqyki0VfqAY3zgKnpK8xsAHA5cDSwFzDTzPYCRgOrErt9UOK4RERERESKrqQt1+7+mJnVdVt9APCKu68AMLMbgRnAauIJ9hJUxUSk9PLpGz7+BLXMi4iI9CGIJHYUH7VQQzypHgUsAI43syuBhb0drNm+RIpg/Am5D6BcsxSW3lqaeERERCpEEAMaM03D4+7+DtBvk5hm+xIpgnz6hufayi0iIlKFgkiuVwO7pi2PBl7L5QRmNh2YPnasKkGJlFU+XUlA3UlERKRqBNEt5FlgnJmNMbNtgC8Cf8jlBO6+0N2bamtrSxKgiGSQT1cSUHcSEZEK0Nb2URG3urq6LsvSValL8d0AHA6MMLPVwGx3/62ZnQPcR7wU31x3f76UcYhIEeRbZlDdSUREIq2trY2mpqbUcnt7e2o5KhO7lFOpq4XM7GX93cDdpby2iIiIiOTOLNPwuK46OztpbGxMTfQCqiGfFMmSd2Y23cxaOzo6gg5FRESqhLsreRCRfkUyuVafaxEREZHSSH6QTD5isVjG/WKxWJf9JC6SybWIiIiIlEdLSws1NTVd1tXU1NDS0hJQRH0LOtmPZHKtbiEiIiJSSYJOCPvS0NBAa2trajkWi9Ha2qrBjL2IZHKtbiEiIiIi5ZOeSK9cuVKJdR8imVyLiEiwzOzHZvacmS0xs/vN7ONBxyQiEgZKrkVEJB8/c/cJ7j4RuBP4YdABiYiEQSSTa/W5FhEJlrtvSFscAoSzs6iISJmVdBKZUnH3hcDC+vr6M4OORUSysGZpfjM1jj8h46yQfQ76WXRN/tOt93I9yczMWoBTgA7giIDDEREJhUi2XItIhIw/AXYen/txa5bmlyQvvTV+bLmuV8HM7EEzW5bhMQPA3c93912BNuCcXs7RZGaLzGzR2rVryxm+iEggItlyLSIRUn96fq3B+bR0J+08Hk6/q3zXq1DuflSWu84H7gJmZzhHK9AKUF9fr64jIlLxlFyLSHjl051kzdL8WsolJ2Y2zt2XJxaPBV4KMh4RqTxhrfvdn0gm12Y2HZg+duzYoEMRkVIZf0J+x+08Pv9jJRcXmdmewIdAO3BWwPGIiIRCJJNrDWgUqQL5dieRsnD344OOQUQkjDSgUURERESkSJRci4iIiIgUiZJrEREREZEiUXItIiIiIlIkSq5FRERERIokksm1mU03s9aOjo6gQxERERERSYlkcu3uC929qba2NuhQRERERERSIplci4iIiIiEkZJrEREREZEiUXItIiIiIlIkkZz+XESkJNYshWuOyf24ncfD0RcVPx4REYkcJdciIgDjTwg6AhGRUHP3oEOIhEgm12Y2HZg+duzYoEMRkUpRf3r8ISIiUoBI9rlWKT4RERERCaNIJtciIiIiImGk5FpEREREpEiUXIuIiIiIFImSaxERERGRIrEol1Uxs7VAey+ba4GOLE+V7b797dff9hHAuixjCrNcntswX7cY58vnHHptlk6UXpsxdx9ZimDCKoT37P720fsifNct9JxRuWf3t49em8FcN7v7trtX5ANoLfa+/e2XxfZFQT8v5X5uw3zdYpwvn3PotRmd10jYr1tJjyDeF/3to/dF+K5b6Dmjcs/ubx+9NsN93UruFrKwBPv2t18u14yyoH7PYl+3GOfL5xx6bZZOpbw2q1EQ74tcrxtVlfS+KPScUbln53rdqKqk12ZKpLuFRI2ZLXL3+qDjEOlOr02RnvS+kLDSazPcKrnlOoxagw5ApBd6bYr0pPeFhJVemyGmlmsRERERkSJRy7WIiIiISJEouRYRERERKRIl1yIiIiIiRaLkWkRERESkSJRcB8jMhpjZtWZ2tZk1BB2PSJKZ7W5mvzWzW4OORSQsdM+WsNI9O1yUXBeZmc01s3+a2bJu66ea2V/N7BUz+15i9ReAW939TODYsgcrVSWX16a7r3D3LwcTqUj56J4tYaV7dnQpuS6+ecDU9BVmNgC4HDga2AuYaWZ7AaOBVYndPihjjFKd5pH9a1OkWsxD92wJp3nonh1JSq6LzN0fA97stvoA4JXEJ8v3gRuBGcBq4jdr0P+FlFiOr02RqqB7toSV7tnRpZtDeYzio9YOiN+gRwELgOPN7EpKPM+9SC8yvjbNbLiZXQVMMrPvBxOaSGB0z5aw0j07ArYOOoAqYRnWubu/A5xe7mBE0vT22lwPnFXuYERCQvdsCSvdsyNALdflsRrYNW15NPBaQLGIpNNrU6QnvS8krPTajAAl1+XxLDDOzMaY2TbAF4E/BByTCOi1KZKJ3hcSVnptRoCS6yIzsxuAp4A9zWy1mX3Z3bcA5wD3AS8CN7v780HGKdVHr02RnvS+kLDSazO6zN2DjkFEREREpCKo5VpEREREpEiUXEtVMrPTzGypmXWa2Rozu9LMdkhsazazzWb2dtrju4ltj5jZpm7bDg72txEREZGwUHItVcfMvgX8FPgOUAscBMSABxIDRABucvft0h7/J+0U53Tb9lR5fwMREREJK9W5lqpiZkOBOcAZ7n5vYvVKMzsJWAE0BhaciIiIRJ5arqXafAoYTHymtRR3fxu4B/hMEEGJiIhIZVByLdVmBLAuUc6ou9cT2wFOMrO30h4fT9vv0rT1fy55xCIiIhIZSq6l2qwDRphZpi5RuyS2Q7x26A5pj/QZsP4jbf3kkkcsIhIRZvaBmS1Je3wv6JiSzOxWM9vdzJ5OxPZ3M1ubFmtdL8f9xMx+3G1dvZk9l/j5j2ZWW/rfQKJCybVUm6eA94AvpK80syHA0cAfgwhKRKRCvOvuE9MeFxV6wl4aQ3I9x97AAHdf4e4HuvtE4IfEB68nY13Zy+E3ACd3W/fFxHqA+cBZhcYolUPJtVQVd+8gPqDx12Y21cwGJlorbgFWA9cFGJ6ISEUys5VmNsfM/pwog/qJxPohZjbXzJ41s/81sxmJ9aeZ2S1mthC438y2MrMrzOx5M7vTzO42sxPMbIqZ3Z52nc+Y2YIMITQAd2QR59Fm9lQizpvMbEhiBsRNZrZfYh8DTgRuTBx2BzCrkOdHKouSa6k6ibJ6PwAuBjYATwOrgCnu/l6QsYmIRNy23bqFpLf4rkt0pbsS+HZi3fnAQ+6+P3AE8LPEN4kABwOnuvuRxL9trAPGA19JbAN4CPikmY1MLJ8OXJMhrk8Di/sK3Mx2Ar5H/G/BZOA54NzE5huIt1Ynz/Wau78K4O7rgO2TcyWIqBSfVCV3/y3w2162Nfdx3OElCklEpBK8m+hykUmyRXkxH3XN+yxwrJklk+3BwG6Jnx9w9zcTPx8C3OLuHwJrzOxhAHd3M7sOaDSza4gn3adkuPYuwNp+Yv8UsBfwZLxxmm2AxxPbbgAeTUwolt4lJGlt4hpv9XMNqQJKrkVERKQckt8MfsBH+YcBx7v7X9N3NLMDgXfSV/Vx3muAhcAm4gl4pmpQ7xJP3PtiwL3u/qXuG9x9pZm9Bvz/wHHAft12GZy4hoi6hYiIiEhg7gO+nujHjJlN6mW/x4HjE32vPwYcntyQqOb0GnABMK+X418ExvYTy5PAYWa2eyKWIWY2Lm37DcClwIvuvia50sy2Il7GdVU/55cqoeRaREREiqV7n+v+qoX8GBgIPGdmyxLLmdxGfND5MuA3xMfKdKRtbwNWufsLvRx/F2kJeSbu/gbwZeAmM/sL8WR7j7Rdbgb24aOBjEkHAI+7+wd9nV+qh7l70DGIiIiI9MnMtnP3t81sOPAM8OlkC7KZXQb8b2I8TaZjtwUeThxT1CTYzC4nPjfCo8U8r0RXpJPrESNGeF1dXdBhiIjkbPHixevcfWT/e1YO3bNFJMqyvW9HekBjXV0dixYtCjoMEZGcmVl70DGUm+7ZIhJl2d631edaRERERKRIlFyLiIiIiBSJkmsRERERkSJRci0iIiIiUiRKrkVEREREikTJtYiIiIhIkSi5DkBbWxtmhplRV1dHW1tb0CGJiIiI9CmZu1Tq9YpFyXWZtbW10dTUlFpub2+nqalJCbaIiEgVi2oiKT1FehKZqOjvzdLZ2UljYyONjY2pdVGeOVNERESkWqnlusTmz59f1uNEREREqlnQ3wKo5brEli9fTnNzc2r5kksuoaOjo8d+tbW1nHfeeV2OExGR8Ej+sdY3iyLSFyXXZTJ79mwAxo4dS1NTE52dnaltNTU1XH755TQ0NAAwZ86cQGIUERERkcKoW0iZNTQ00NramlqOxWK0tramEmsRESmtoL8yFpHKppbrADQ0NCiZFhEREalAarkWERGRSNC3DhIFSq5FRERERIpEybWIiIiIlEy1feOg5FpERHows7lm9k8zW9bLdjOzS83sFTN7zswmlztGEZEwUnItIiKZzAOm9rH9aGBc4tEEXFmGmERylm+rabW1tkrxKLkWEZEe3P0x4M0+dpkB/M7j/gTsYGa7lCc6EZHwClVybWafN7OrzewOM/ts0PGIiEivRgGr0pZXJ9Z1YWZNZrbIzBatXbu2qAGoZVFEwqjkyXVv/fbMbKqZ/TXRX+97AO7+e3c/EzgNOLnUsUWR/piISEhkuhH1mBfc3Vvdvd7d60eOHFmGsEREglWOlut5dOu3Z2YDgMuJ99nbC5hpZnul7XJBYrukaWtrS/1cV1fXZVlEpMxWA7umLY8GXgsoFhGR0Ch5ct1Lv70DgFfcfYW7vw/cCMxIjD7/KXCPu/850/lK+RVjmLW1tdHU1JRabm9vp6mpSQm2iATlD8Apifv2QUCHu78edFAiIkELqs91b331vg4cBZxgZmdlOjCMXzGWoqtGc3Nz6rxmRmNjI52dnV326ezspLGxsct+8+fPL2ocIlKdzOwG4ClgTzNbbWZfNrOz0u7NdwMrgFeAq4GzAwpVAqRKHNGl/4PS2Tqg62bsq+fulwKXljuYQnTvqtHS0kJDQ0NB5xw3blzexy5fvryga4uIALj7zH62O/DvZQqn6iSTnvjTXPrjJLr0fx4+QbVcV0RfvVJ11Zg1axbu3uURi8Uy7huLxVL7NDc3F3RdEREpvii0EEYhRpGoCCq5fhYYZ2ZjzGwb4IvE+++FWnr3i2y7ahQr4W1paaGmpqbLupqaGlpaWopyfhEREREpXDlK8fXot+fuW4BzgPuAF4Gb3f35HM453cxaOzo6ShN0BkH3ZW5oaKC1tTW1HIvFaG1tzboLilolREREREqv5H2ue+u35+53Ex8Qk885FwIL6+vrzywktlwsX768Ryv0JZdcQqYEv7a2lvPOOy+1XEgf6nQNDQ00NjYCsHLlyqyPK0W/cBERERHpKagBjZE1e/bs1M9jx46lqampS9eQmpoaLr/88pIlr7kOWOitXzigBFtERESkyEI1/XnUFNpVoxSKXcJP3UlEREREshfJ5DqIPte9SU+kV65cGWhiXewSfpoRUkRERCQ3kUyu3X2huzfV1tYGHQpAqhRe0IpZwk8zQoqIiIjkLpLJtWQv2xJ+mhFSRESkcOpOKUquK1w2/cI1I6SIiIhIcSi5rgL99QvXjJAiIiIixaHkukrk2i9cM0KKiIiI5C6SyXWYqoVUqjCWGRQREREJu0gm12GrFlKpwlRmUERERCQKNEOj9CkMJQZFREREoiKSLdciIiIiImGk5FpCRfVBRUREJMqUXIuIiIiIFImSaxERERGRIolkcq1SfJWpra0t9XNdXV2XZREREZEoiGS1EHdfCCysr68/M+hYJHfz58/vMW36c889x8KFC1PL7e3tnH766SxYsIAJEyak1o8bN45Zs2aVLVYRERGRXEQyuZZoW758eVZTp2/evJkFCxawYMGC1DpNuS4iIiJhFsluISIiIiIiYaTkWgLR3NyMu6cesVgs436xWCy1j1qtRcrHzKaa2V/N7BUz+16G7aeZ2VozW5J4fCWIOEVEwkbJtYRCS0sLNTU1XdbV1NTQ0tISUEQi1cvMBgCXA0cDewEzzWyvDLve5O4TE4//KWuQIiIhpeRaSiLXyWAaGhpobW1NLcdiMVpbW2loaChFeCLStwOAV9x9hbu/D9wIzAg4JhGRSIhkcq1SfJUpPZFeuXKlEmuR4IwCVqUtr06s6+54M3vOzG41s10zncjMmsxskZktWrt2bSliFREJlUgm1+6+0N2bamtrgw5FRCRQZjYk0Y2jqKfNsM67LS8E6tx9AvAgcG2mE7l7q7vXu3v9yJEjixymiEj4RDK5lnArZDKY5OBFEcnMzLYys1lmdpeZ/RN4CXjdzJ43s5+Z2bgiXGY1kN4SPRp4LX0Hd1/v7u8lFq8G9ivCdUVEIk91rqVgc+bMSf2c7WQwIpK3h4m3FH8fWObuHwKY2Y7AEcBFZna7u19fwDWeBcaZ2RjgH8AXgS6zN5nZLu7+emLxWODFAq4nIlIxlFxL3saNG5dVv+hMk8FoanORvB3l7pu7r3T3N4HbgNvMbGAhF3D3LWZ2DnAfMACY6+7Pm9mPgEXu/gfgP8zsWGAL8CZwWiHXFBGpFOoWInkrZBpyTWEukp9kYm1ms/vbp8Dr3O3ue7j7/+fuLYl1P0wk1rj79919b3ff192PcPeXCr2miEglUHItBUmfCCbbyWCK3ac617J/IhVitpn91MyuNrOvmdmwoAMSEREl11JkmgxGpGwc2ES868auwJNmtm+wIYmIiPpcS1El+2A3NjYC8RbrlpYW1awWKb6X3D3ZNeRWM5sHXAUcGVxIIiKilmspunJOBlNI2T+RiFtnZqnyd+7+MqBC0iIiAYtky7WZTQemjx07NuhQJEBtbW00NTWlltvb21PLaimXKvAfwI1mthhYCkwAXg02JBERiWTLtWZorF7Nzc2pAYyNjY10dnZ22d7Z2UljY2NqHzNj/vz5AUUrUnyWGL3r7n8BJgI3JDY9DMxM30dERMovki3XEn6lmGVx3Lj8Jp5bvnx5kSMRCdTDZnYbcIe7/x24C7jLzLYBDjGzU4kn2vMCjFFEpGpFsuVaqtOsWbNyLvvX3Nxc3iBFSm8q8AFwg5m9ZmYvmNkKYDnxlutL3H1ekAGKiFQzJdcSWYWW/VN9bIkid9/k7le4+6eBGDAFmOzuMXc/092XBByiiEhVU3ItkauSAL8AABwcSURBVNXQ0EBra2tqORaL0draqsGMUjXcfbO7v+7ubwUdi4hUtnJX54pyNTAl1xJp5Sz7l6QWbxERKaawJ5K9VecqVZzlvl6xaUCjiIiISEDCWFY2mwakZHWu5KRxkH8xg3Jfr9Rybrk2s2FmNqEUwYiUS9hbCUREpDKll4rNpaysREdWybWZPWJmQ81sR+AvwDVm9ovShiZSGlH/ukkEwMxONLPtEz9fYGYLzGxy0HFVKn0gl2qSXpkr2+pchbQiF/N6YXivZttyXevuG4AvANe4+37AUaULSyR7/b2p0yee0eQzUkEudPeNZnYI8DngWuDKgGOqSPpALsVU7sS1GAqtzlWu64XlvZptcr21me0CnATcWcJ4RIoq34lnIPPkM2H4RCyS8EHi32OAK939DmCbAOOpGPraXsqp3IlrPspdnSvb64X1vZptcj0HuA94xd2fNbPdiU9YEAgzm25mrR0dHUGFIBHRfeKZQiafCcsnYpGEf5jZb4g3etxtZoNQBah+6QOyhE1UysqWuzpXENXAiiXbG/Hr7j7B3c8GcPcVQGB9rt19obs31dbWBhWCRFi2rQTqTiIhdxLxRo+piTrXOwLfCTakcMv2A3IUv7avBpX8wSjKiWSQwvpezTa5/nWW60RCL5tWgmJ3JxEpNnfvdPcF7r48sfy6u98fdFxhUqyvjKPwtX2l0zeHko2wvFf7rHNtZgcDnwJGmtk30zYNBQaUMjCRUmpoaEjVyly5cmWP7bNmzWLWrFld1tXV1dHe3t5j31gsljrHnDlzih6rSDoz2whkanoxwN19aJlDqnjJD97Je0YsFqOlpUWtiyWUT91jfXsgYXmv9tdyvQ2wHfEkfPu0xwbghNKGJhIuYflELNXN3bd396EZHtsrse6qmF8Z62t7kfyUuztPGN6rfbZcu/ujwKNmNs/dezbZiVSRsHwiFkkys2HAOGBwcp27PxZcROHW0tJCU1NTl64h+oAcTt0/5GTzzaGETxhnnyyHbPtcDzKzVjO738weSj5KGplICIXhE7EIgJl9BXiM+KDGZEWn5iBjCruoVGWQngqpe5yUS6tpJQ+eLKWwlsYrt2yT61uA/wUuID4aPfkQiSyN8JeIOxfYH2h39yOAScDaYp3czKaa2V/N7BUz+16G7YPM7KbE9qfNrK5Y185GvsmPPiBHUz4fjPIdBKnBk1KoPruFpNni7pr5S0QkPDa5+6ZEy88gd3/JzPYsxonNbABwOfAZYDXwrJn9wd1fSNvty8C/3H2smX0R+ClwcjGu359q/aq52vU3ED2fQZDZynScGmd6UneeuGyT64VmdjZwO/BecqX7/2vv/qPjrO47j78/AbnEFIuucUJqQMaLYAvUhViQQ2FxW9HWoSgcILjEchuoEyWbTXc3zbZLlm48bkpDW/ZkTzc0iXuSOA02xLByQYHA1oTC4cBJbDbUscM6JsaOvQ7EONikVn4Y8t0/5plhJI08o9Ez88yj+bzOmaN5nrnPfb6S71x/dXXn3vhBU6Iys2kr/Ufj/wBmrH2STgb+AfhHSS8D+1Oq+2KKm4btApB0N3A1UJlcX83r01DuBT4pSXGMBnfw4EHWrl075tx5553HRRddxNGjR6uODF5wwQVceOGFzJ49m2XLlgFwzz33VP1T8/ve9z42bdpUPrdkyRIuueQSzjnnHF566SW+/OXiBsM33ngjAGvXruXyyy9n4cKFvPDCCzz00EMT7t/f38/pp5/O3r17x1xXsnTpUk499VR27drF449PnO5+1VVXAXD22WdP+N4BrrnmGrq7u9m2bRtbtmwpny/da3R0lNmzZ/PMM8/wzDPPTLh+cHCQrq4uNm/ezPbt2yfEWDp+8skn+fa3vz3m2q6urvIvI6WfQ2WMlT/zTZs2sW/fvjHXz5nz+udnH3roIV544YUxr8+dO5eBgQEARkZGOHjw4Jjvr7L88PAwr7zyypjrTzvtNK644goANmzYwOjo6Jjv78wzz2TJkiVA8Reu0msl1X7elfffvn07mzdvHvNzqOe6km3btnH++edz+PBhNm7cOKHMjh07JrS9SuPb3vh/u8q298gjj0y4vtT2Fi5cyOWXXz4h7quuuopTTjmFHTt28NRTT024fs6cObzyyisT2l7JsmXLJrS9yhjHt71qP6tbb72VlStX8pOflFNHZs2axZVXXlk+fuyxx3j++efHXFvZ9vr7+yd8b3PmzOHaa68Fqre9gYEBRkZGgIltD+DUU09l6dKlQP1tbyrqTa7fnXytnAoSwMIp3c1sBnCyau0gIq5JnhYkPQp0A19Jqfr5wN6K433A2yYrExGvSjoMzAVeqiwkaQgYApg/f34qwR05cmRK560zlBLtkq985Su8+OKLE8rNnTuXJUuW8IEPfKDqL3bVkrHK66x+g4OD7Ny5k9tvv50jR44wd+5crrvuOi699NKsQ2sq5TlR6Ovri2q/bTVDaf3iVatWteR+lk/t1E48ct3eJD0dEX3TuP6j1c5HxJ81HlW57uuB346I9yTHvwdcHBF/WFFme1JmX3L8naTMxKwkkVafPd0/NTf63mjldXmIsdHr1q1b1/CqS1O5X2n60PjVYeqdqz3V6xqJMW/X5SHG6VxXR7119dt1faBR0u9Xe0w/TDMza9CRisdrwNuBBSnVvQ84veL4NCZOOSmXkXQ8xZHzlkwV9Jrz1bV6hYtG7tfKDws2ujpMJ6wq49VQmmz8IvvVHhS3Oi89/g7YBdxbz7XNfCxevDhapVAoRKFQaNn9LJ/aqZ1QnLqVdRg2CWBLpNgfAj8HPJxSXccn/fyZFDcT+2fgvHFl/j3w6eT5DcCGWvWm2Wffeeed5Tbe09MTd955Z93XNvreaOS6RuJs9JrZs2eXrwNi9uzZdf9cpvq91Xu/yten8kgrzkavyct1rW4refiZTOe6Ouqtq99utOPtBu5v5No0H06urd20SzuZTuJhrdGE5PoXgJ0p1ncl8G3gO8Atybk/A96RPD+B4jKtzwFfBxbWqjPtPrvd/8NuJInJImmtp79o9H5Orpt3XTPbStbfW1bX1VFvXf12vR9oHG+U4q5gZtZkU5075mXKOoOkb1L8DwTgOGAe8LG06o+IB4EHx537aMXzHwPXp3W/maBZS8E1unxcPZrdX4zvtzp1abY0NHOpQUtXvXOuRyTdnzweAHYA9zU3NDOrh3fE6lhXAQPJ47eAX4yI/5ltSNYq40fKenp6qpbr6ekZU67R/qLR+43n+fKt18i/nU1PvTs03g789+TxF8DlETFhx65WkTQgac3hw4ezCsHMLBOS/kjSHwHXVTx+F/gPyXnLSKMJaB6T1kbv1wkfFmyWvLaVTlRXch0RjwH/FziJ4ry+nzYzqDriGYmIoe7u7izDMMvc+vXrKRQKYx6TvS+6u7vHlFu/fn2Lo7WUnJQ8+oB/R3G96fnA+4FzM4zLxmkkiWl20ppWgjadJNlb0KfDv+C0r3qnhSyj+IGV64FlwNckvbOZgZlZbTt37pxwrr+/n66urjHnurq66O/vr3mttb+IWB0Rq4FTgLdGxIcj4sPAYopL5lmbaCSJaXXSOp1RTCfJ2fIvOO2r3g803gJcFBHfB5A0D9hEcctbM8vY+E1ram3SUNrsxnLtDMb+FfGnpLfOtaVkcHCw/F6s9wN7jVzTqFK/0OimLpatVrYVq1+9yfUbSol14iD1z9c2sxrWr19fdSR569at5ecnn3wy/f39LFq0qGZ97nA7wheBr0vaSHHVkGuAL2QbkuWR+wuzdNWbID8k6WFJN0q6EXiAcUs0mVnjJkusR0ZGyseHDx9mZGRkTMIN0NvrVTE7UUTcCvwB8DJwCLgpIj6ebVRmnc07HxrUGLmWdBbw5oj4Y0nXApcBAp4C3GLMUlQoFGqWOXr0KMPDwwwPD5fPedmkzhURTwNPZx2HmXmPAXtdrWkh/wP4rwARMQwMA0jqS14baGp0ZmY2hqQnIuIyST/k9U1koDjwERExJ6PQzDpKo5u6eEBk5qs1LWRBRGwdfzIituAPzphNSa3NWwqFQipLZNnMFhGXJV9Piog5FY+TnFibmWWvVnJ9wjFee2OagZjZWF7o345F0vWSTkqe/6mkYUkXZh2XWadIa81wm3lqJdebJb13/ElJK/E8P7Om8kL/VsN/i4gfSroM+G2KK4V8OuOYzDqWB0SspNac6/8EbJQ0yOvJdB8wi+KyT2bWRNNZIssjJDPea8nX3wE+FRH3SSpkGI9ZR/Oa4VZyzOQ6Il4EflXSrwPnJ6cfiIivNj0yMzM7lv8n6TPAFcBfSvo5vP+AWaa8ZrhBnZvIRMSjwKNNjsXMzOq3DFgK3B4RhyS9BfjjjGMyM+t49e7QaGZmbSQiRkmWR02Ovwd8L7uIzMwM/CdEM6tQa7lAax8qWiHpo8nxGZIuzjouM7NO5+TarAW8Ja41wd8ClwDvSo5/CNyRXThmZgaeFmLWdN4S15rkbRHxVknfAIiIlyXNyjooM7NO55Frs5QVCoXy9ApJrFixgtHR0TFlSlvilsoUCoVsgk2Jp5Nk4qik40i2QJc0D/hZtiGZmZmTa7MU9fb2pn6td/WySfwNsBF4k6RbgSeAv8g2JDMzc3JtlqLly5c3vCXu8uXLWxyt5VlErAP+BPg4sB+4nuIGX2ZmliEn12ZN5i1xLU2S5kj6iKRPAmdQ/GDjG4ARimtfm5lZhvyBRrMm85a4lrIvAi8DTwHvobhxzCzg6oh4ZrqVS/pXwJeABcBuYFlEvFyl3GvAN5PD70bEO6Z7bzOzmcAj12YtUJlI7969uy0Tay8XmBsLI+LGiPgMxWX4+oCr0kisEzcDj0REL/BIclzNjyLiguThxNrMLOGRa7MOtnr1agC2bt3KyMhI+fyePXu46aabGB4eZtGiReXzvb29nhuevaOlJxHxmqTnI+KHKdZ/NfBryfMvAP8E/JcU6zczm9GcXJt1oN7e3pqj50ePHmV4eJjh4fIO27lfMnCG+BVJryTPBbwxORYQETFnmvW/OdlKnYj4nqQ3TVLuBElbgFeB2yLiH6Z5XzOzGaFtkmtJC4FbgO6IeGfW8ZjNZMuXL2/LqSlWW0QcN906JG0CTq3y0i1TqOaMiNif9N1flfTNiPhOlXsNAUMAZ5xxRkPxmpnlSVPnXEv6nKTvS9o27vxSSTskPSfpZoCI2BURK5sZj5m9bqrLBU42au252vkTEVdExPlVHvcBL0p6C0Dy9fuT1LE/+bqL4tSRCycptyYi+iKib968eU35fszM2kmzR67XAp8E/r50ItlR7A7gN4F9wGZJ90fEt5oci5lN4tZbb2VoaGjMTpKTLRdYmqcNnqs9Q90PvBu4Lfl63/gCkn4BGI2In0g6BbgU+KuWRmlm1qaamlxHxOOSFow7fTHwXDLagaS7KX6Axsm1WUbqWS6wnnna4LnaM8BtwAZJK4HvUtycBkl9wPsj4j3ALwGfkfQzin8Bvc0DJGZmRVksxTcf2FtxvA+YL2mupE8DF0r6yGQXSxqStEXSlgMHDjQ7VrOOUWu5QI88d4aIOBgR/RHRm3z9QXJ+S5JYExFPRsQvR8SvJF8/m23UZmbtI4vkWlXORdKhvz8i/nVEfHyyiz1/zyw7jWztfqxRa0lI1bqE5mj1/czMrPNkkVzvA06vOD4N2J9BHGYtVUo2ZxJv7W5mZjZWFsn1ZqBX0pmSZgE3UPwAjZnlzODgIGvWrCkf9/T0sGbNGi/zZ2ZmHavZS/HdBTwFnCNpn6SVEfEq8EHgYeBZYENEbJ9ivQOS1hw+fDj9oM1sSvKwtbuZmVmrNHu1kHdNcv5B4MFp1DsCjPT19b230TrMzMzMzNKWxbQQMzMzM7MZycm1meWOV/0wM7N25eTazMzMzCwluUyu/YFGMzMzM2tHuUyuI2IkIoa6u7uzDsXMzMzMrKypq4WYWb7MtE1uzMzMWi2XI9dmln/r1q0rP1+wYMGY45lwPzMz60xOrs2s5datW8fQ0FD5eM+ePQwNDTUt4W31/czMrHM5uTazpisUCuXl8ySxYsUKRkdHx5QZHR1lxYoVY8o1qrKOVtzPzKwTRERLpw+2+n5pyWVy7dVCzMzMbCbJayJpE+UyufZqIWbtpdZ/CoVCoVwmIujp6alarqenZ0y56cbTqvuZmZmVeLUQM2uJ1atXl58vXryY/fv3c/To0fK5rq4uFi9ePKZcb28vy5cvn9J91q9fz86dO8eca+b9zMysvWQ9WJLLkWszy4/e3t4J5xYtWsTAwED5uLu7m4GBARYtWjSm3PgkGWqv+lHtmuncz6zEf+Ews3p45NrMmupYI8GlDxEeOnRowmuVI8olk636ATA4ODim7KpVq6Z9PzMzs6nyyLWZta1GVhkpFArZBGu54RFoM2umXCbXXi3EzFrJS/WZmVm9cjktJCJGgJG+vr73Zh2LmTVHb2/vhFHoT3ziE1T7pbq7u5sPfehDY641s5nHf3GwPMhlcm1mM1+1udpnnXUWQ0NDY6aGzJ49mzvuuGPCnGszM7Ms5HJaiJl1psHBQdasWVM+7unpYc2aNU6szczaWKd9zsHJtZnlSmUivXv3bifWKZN0vaTtkn4mqe8Y5ZZK2iHpOUk3tzJGM7N25uTazMwqbQOuBR6frICk44A7gLcD5wLvknRua8Izm5pGR007bbTV0uM512ZmVhYRzwK1Vke5GHguInYlZe8Grga+1fQAzczanEeuzcxsquYDeyuO9yXnJpA0JGmLpC0HDhxINQiPLJpZO8plcu11rs3MGidpk6RtVR5X11tFlXNVs9yIWBMRfRHRN2/evMaDNjPLiVxOC/E612ZmjYuIK6ZZxT7g9Irj04D906zTzGxGyOXItZmZZWoz0CvpTEmzgBuA+zOOycysLTi5NjOzMknXSNoHXAI8IOnh5PwvSnoQICJeBT4IPAw8C2yIiO1ZxWz54/ny2fO/QfPkclqImZk1R0RsBDZWOb8fuLLi+EHgwRaG1lEaTXpanSw5Ocue/w3aj5NrMzOzJspD8pOHGM3ywsm1mWXGo2xmZjbTeM61mdkxrFu3rvx8wYIFY47NzMzGc3JtZjaJdevWMTQ0VD7es2cPQ0NDTrDNzGxSTq7NzBKFQgFJ5ceKFSsYHR0dU2Z0dJQVK1aMKWdmZlaSy+TaOzSamZmZWTvKZXIdESMRMdTd3Z11KGY2gxQKhfLarxFBT09P1XI9PT1jypmZmZV4tRAzswqrV68uP1+8eDH79+/n6NGj5XNdXV0sXrx4TDmAVatWtSxGMzNrX7kcuTYzS1tvb++Ec4sWLWJgYKB83N3dzcDAAIsWLWplaGaWI/6Llnnk2swMWL58+aSvlT60eOjQoVaFY2ZmOeXk2sxyx6NCZmbWrjwtxMzMzMwsJU6uzczMzMxS4uTazMzMzCwlTq7NzMzMzFLi5NrMzMzMLCXK86fuJR0A9kzycjdQ7/7o9ZatVa7W66cAL9UZUzubys+2ne+bRn2N1OG22Tx5aps9ETGvGcG0qzbss2uV8fui/e473Trz0mfXKuO2mc196+u3K7fwnUkPYE3aZWuVq+P1LVn/XFr9s23n+6ZRXyN1uG3mp420+31n0iOL90WtMn5ftN99p1tnXvrsWmXcNtv7vjN5WshIE8rWKjeVe+ZZVt9n2vdNo75G6nDbbJ6Z0jY7URbvi6neN69m0vtiunXmpc+e6n3zaia1zbJcTwvJG0lbIqIv6zjMxnPbNJvI7wtrV26b7W0mj1y3ozVZB2A2CbdNs4n8vrB25bbZxjxybWZmZmaWEo9cm5mZmZmlxMm1mZmZmVlKnFybmZmZmaXEybWZmZmZWUqcXGdI0omSviDp7yQNZh2PWYmkhZI+K+nerGMxaxfus61duc9uL06uUybpc5K+L2nbuPNLJe2Q9Jykm5PT1wL3RsR7gXe0PFjrKFNpmxGxKyJWZhOpWeu4z7Z25T47v5xcp28tsLTyhKTjgDuAtwPnAu+SdC5wGrA3KfZaC2O0zrSW+tumWadYi/tsa09rcZ+dS06uUxYRjwM/GHf6YuC55DfLnwJ3A1cD+yh21uB/C2uyKbZNs47gPtvalfvs/HLn0BrzeX20A4od9HxgGLhO0qdo8j73ZpOo2jYlzZX0aeBCSR/JJjSzzLjPtnblPjsHjs86gA6hKuciIo4AN7U6GLMKk7XNg8D7Wx2MWZtwn23tyn12DnjkujX2AadXHJ8G7M8oFrNKbptmE/l9Ye3KbTMHnFy3xmagV9KZkmYBNwD3ZxyTGbhtmlXj94W1K7fNHHBynTJJdwFPAedI2idpZUS8CnwQeBh4FtgQEduzjNM6j9um2UR+X1i7ctvML0VE1jGYmZmZmc0IHrk2MzMzM0uJk2szMzMzs5Q4uTYzMzMzS4mTazMzMzOzlDi5NjMzMzNLiZNrMzMzM7OUOLm2tibpNUnPVDxuzjqmEkn3Sloo6WtJbN+VdKAi1gWTXPfnkj427lyfpK3J80ckdTf/OzAzS5f7bDOvc21tTtK/RMTPp1zn8clC/NOp4zzgzyPimopzNwJ9EfHBOq7dGBFnV5y7HTgYER+XtBI4JSL+cjoxmpm1mvtsM49cW05J2i1ptaT/I+mbkv5Ncv5ESZ+TtFnSNyRdnZy/UdI9kkaA/y3pDZL+VtJ2SV+W9KCkd0rql7Sx4j6/KWm4SgiDwH11xPl2SU8lcX5J0onJblo/lrQ4KSPgeuDu5LL7gOXT+fmYmbUT99nWSZxcW7t747g/Mf5uxWsvRcRbgU8B/zk5dwvw1Yi4CPh14K8lnZi8dgnw7oj4DeBaYAHwy8B7ktcAvgr8kqR5yfFNwOerxHUp8PSxApf0JuBmoD+JcyvwH5OX7wJuqKhrf0Q8DxARLwEnSTr5WPWbmbUh99nW8Y7POgCzGn4UERdM8lppdOJpih0vwG8B75BU6rhPAM5Inv9jRPwgeX4ZcE9E/Ax4QdKjABERkr4IrJD0eYod+O9XufdbgAM1Yv9V4FzgyeJAB7OAJ5LX7gIek/QnFDvsu8ZdeyC5x6Ea9zAzayfus63jObm2PPtJ8vU1Xm/LAq6LiB2VBSW9DThSeeoY9X4eGAF+TLEzrzbX70cU/xM4FgEPRcTvjX8hInZL2g/8W+AaYPG4Iick9zAzmyncZ1tH8LQQm2keBv4wmROHpAsnKfcEcF0yj+/NwK+VXoiI/cB+4E+BtZNc/yxwVo1YngSWSFqYxHKipN6K1+8C/gZ4NiJeKJ2U9AbgFGBvjfrNzPLOfbbNOE6urd2Nn793W43yHwO6gK2StiXH1fwvYB+wDfgM8DXgcMXr64C9EfGtSa5/gIrOvZqIeBFYCXxJ0j9T7LjPriiyATif1z8UU3Ix8EREvHas+s3M2pD7bOt4XorPOpakn4+If5E0F/g6cGlpNELSJ4FvRMRnJ7n2jcCjyTWpdqiS7gA2RMRjadZrZpZn7rMtLzzn2jrZl5NPd88CPlbRST9Nca7fhye7MCJ+JGkVMB/4bspxfcOdtJnZBO6zLRc8cm1mZmZmlhLPuTYzMzMzS4mTazMzMzOzlDi5NjMzMzNLiZNrMzMzM7OUOLk2MzMzM0vJ/weBTzso5ODJPwAAAABJRU5ErkJggg==\n", "text/plain": [ "