Fit a model to the data¶
What you will learn
You will learn how to use ctlike to fit a parametric model to COMPTEL data.
Start with creating an observation definition file that defines the names of the counts cube files, geometry factor files and exposure map files. In addition you will need background model files, but since those are not distributed with the data you will use the geometry factors also as background files, which is a reasonable zero order approximation of the instrumental background distribution in COMPTEL.
Below the
observation definition file
that is needed for the following analyses. Since the four counts cubes
correspond to the four energy bands, and every observation holds a single
counts cube, an observation has been added for every energy band.
The IAQ
parameter indicates the instrument response, which needs
to be given for each band in the specified format.
<?xml version="1.0" standalone="no"?>
<observation_list title="observation library">
<observation name="Crab" id="100001" instrument="COM">
<parameter name="DRE" file="m50438_dre.fits"/>
<parameter name="DRB" file="m34997_drg.fits"/>
<parameter name="DRG" file="m34997_drg.fits"/>
<parameter name="DRX" file="m32171_drx.fits"/>
<parameter name="IAQ" value="ENERG(0.75-1.0)MeV"/>
</observation>
<observation name="Crab" id="200001" instrument="COM">
<parameter name="DRE" file="m50439_dre.fits"/>
<parameter name="DRB" file="m34997_drg.fits"/>
<parameter name="DRG" file="m34997_drg.fits"/>
<parameter name="DRX" file="m32171_drx.fits"/>
<parameter name="IAQ" value="ENERG(1.0-3.0)MeV"/>
</observation>
<observation name="Crab" id="300001" instrument="COM">
<parameter name="DRE" file="m50440_dre.fits"/>
<parameter name="DRB" file="m34997_drg.fits"/>
<parameter name="DRG" file="m34997_drg.fits"/>
<parameter name="DRX" file="m32171_drx.fits"/>
<parameter name="IAQ" value="ENERG(3.0-10.0)MeV"/>
</observation>
<observation name="Crab" id="400001" instrument="COM">
<parameter name="DRE" file="m50441_dre.fits"/>
<parameter name="DRB" file="m34997_drg.fits"/>
<parameter name="DRG" file="m34997_drg.fits"/>
<parameter name="DRX" file="m32171_drx.fits"/>
<parameter name="IAQ" value="ENERG(10.0-30.0)MeV"/>
</observation>
</observation_list>
Then you also need a model definition file that describes the source and background model that you want to fit. In the example below, a point source with a ower law is fit at the position of the Crab on top of an instrumental background model.
<?xml version="1.0" standalone="no"?>
<source_library title="source library">
<source name="Crab" type="PointSource" tscalc="1">
<spectrum type="PowerLaw">
<parameter name="Prefactor" scale="1e-3" value="1.0" min="-1000.0" max="1000.0" free="1"/>
<parameter name="Index" scale="-1" value="2.0" min="-5.0" max="+5.0" free="1"/>
<parameter name="PivotEnergy" scale="1.0" value="1.65" min="0.01" max="1000.0" free="0"/>
</spectrum>
<spatialModel type="PointSource">
<parameter name="RA" scale="1.0" value="83.6331" min="-360" max="360" free="0"/>
<parameter name="DEC" scale="1.0" value="22.0145" min="-90" max="90" free="0"/>
</spatialModel>
</source>
<source name="Background(0.75-1.0)MeV" type="DRBFitting" instrument="COM" id="100001">
<node>
<parameter name="Phibar" scale="1.0" value="1.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="0.0" min="0.0" max="1000.0" free="0"/>
</node>
<node>
<parameter name="Phibar" scale="1.0" value="3.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="0.0" min="0.0" max="1000.0" free="0"/>
</node>
<node>
<parameter name="Phibar" scale="1.0" value="5.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="0.0" min="0.0" max="1000.0" free="0"/>
</node>
<node>
<parameter name="Phibar" scale="1.0" value="7.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="0.0" min="0.0" max="1000.0" free="0"/>
</node>
<node>
<parameter name="Phibar" scale="1.0" value="9.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="0.0" min="0.0" max="1000.0" free="0"/>
</node>
<node>
<parameter name="Phibar" scale="1.0" value="11.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="0.0" min="0.0" max="1000.0" free="0"/>
</node>
<node>
<parameter name="Phibar" scale="1.0" value="13.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="0.0" min="0.0" max="1000.0" free="0"/>
</node>
<node>
<parameter name="Phibar" scale="1.0" value="15.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="0.0" min="0.0" max="1000.0" free="0"/>
</node>
<node>
<parameter name="Phibar" scale="1.0" value="17.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="1.0" min="0.0" max="1000.0" free="1"/>
</node>
...
</source>
<source name="Background(1.0-3.0)MeV" type="DRBFitting" instrument="COM" id="200001">
<node>
<parameter name="Phibar" scale="1.0" value="1.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="0.0" min="0.0" max="1000.0" free="0"/>
</node>
...
</source>
<source name="Background(3.0-10.0)MeV" type="DRBFitting" instrument="COM" id="300001">
<node>
<parameter name="Phibar" scale="1.0" value="1.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="1.0" min="0.0" max="1000.0" free="1"/>
</node>
...
</source>
<source name="Background(10.0-30.0)MeV" type="DRBFitting" instrument="COM" id="400001">
<node>
<parameter name="Phibar" scale="1.0" value="1.0" min="0.0" max="50.0" free="0"/>
<parameter name="Normalization" scale="1.0" value="1.0" min="0.0" max="1000.0" free="1"/>
</node>
...
</source>
</source_library>
Since the file is relatively long it is not entirely reproduced here, but you
can download the file models.xml
by clicking on
the file name.
The first source in the model definition file is the point source for the Crab, the next four sources are background model components for each of the energy bands.
You may have recognised the id
attribute for each model component. This
attribute links a given model component to a given observation. For example,
Background(1.0-3.0)MeV
has id="200001"
and will hence only be used
to model the background for the observation that corresponds to the 1 - 3 MeV
band.
Each background model implements a so called Phibar-fitting of the file that was specified for the background model (recall that you specified the geometry factors as background model). Phibar-fitting means that the background model is fitted to the data for each Phibar-layer of the counts cube. Each background model is composed of 25 nodes, corresponding to the number of Phibar layers of a COMPTEL counts cube, and each node is defined by it’s Phibar value (a fixed parameter) and it’s Normalization (in general a free parameter). For some background models some normalizations of Phibar layers have been set to zero and the parameters fixed to exclude layers from the fitting that do not contain any data (the filling-factor of a counts cube is energy dependent; for the 0.75 - 1 MeV energy bin the first 8 layers are in fact empty).
Now you are ready to fit the model using the ctlike model tool. You do this as follows:
$ ctlike
Input event list, counts cube or observation definition XML file [events.fits] obs.xml
Input model definition XML file [$CTOOLS/share/models/crab.xml] models.xml
Output model definition XML file [crab_results.xml]
ctlike creates on output the
model definition file
crab_results.xml
where the parameter values were updated by their
fitted values, and where the statistical uncertainties were added using the
error
attribute. To investigate how the fit went you should inspect the
log file ctlike.log
that was also created by ctlike:
2019-04-04T15:11:31: +=================================+
2019-04-04T15:11:31: | Maximum likelihood optimisation |
2019-04-04T15:11:31: +=================================+
2019-04-04T15:11:32: >Iteration 0: -logL=988079.891, Lambda=1.0e-03
2019-04-04T15:11:32: >Iteration 1: -logL=670528.685, Lambda=1.0e-03, delta=317551.206, step=1.0e+00, max(|grad|)=86223.268050 [Index:3]
2019-04-04T15:11:33: >Iteration 2: -logL=387041.036, Lambda=1.0e-04, delta=283487.648, step=1.0e+00, max(|grad|)=69889.358952 [Index:3]
2019-04-04T15:11:34: >Iteration 3: -logL=154421.136, Lambda=1.0e-05, delta=232619.900, step=1.0e+00, max(|grad|)=47995.573198 [Index:3]
2019-04-04T15:11:35: >Iteration 4: -logL=-12398.051, Lambda=1.0e-06, delta=166819.188, step=1.0e+00, max(|grad|)=24764.034734 [Index:3]
2019-04-04T15:11:35: >Iteration 5: -logL=-108274.155, Lambda=1.0e-07, delta=95876.104, step=1.0e+00, max(|grad|)=7544.055951 [Index:3]
2019-04-04T15:11:36: >Iteration 6: -logL=-145907.646, Lambda=1.0e-08, delta=37633.490, step=1.0e+00, max(|grad|)=1167.458562 [Index:3]
2019-04-04T15:11:36: >Iteration 7: -logL=-152898.181, Lambda=1.0e-09, delta=6990.535, step=1.0e+00, max(|grad|)=110.883829 [Index:3]
2019-04-04T15:11:37: >Iteration 8: -logL=-153217.048, Lambda=1.0e-10, delta=318.867, step=1.0e+00, max(|grad|)=-2.969678 [Scale factor 2:111]
2019-04-04T15:11:37: >Iteration 9: -logL=-153218.258, Lambda=1.0e-11, delta=1.210, step=1.0e+00, max(|grad|)=-0.047105 [Index:3]
2019-04-04T15:11:38: >Iteration 10: -logL=-153218.258, Lambda=1.0e-12, delta=0.000, step=1.0e+00, max(|grad|)=-0.001877 [Index:3]
2019-04-04T15:11:38:
2019-04-04T15:11:38: +====================================+
2019-04-04T15:11:38: | Maximum likelihood re-optimisation |
2019-04-04T15:11:38: +====================================+
2019-04-04T15:11:39: >Iteration 0: -logL=-152378.895, Lambda=1.0e-03
2019-04-04T15:11:39: >Iteration 1: -logL=-152759.255, Lambda=1.0e-03, delta=380.360, step=1.0e+00, max(|grad|)=-2.480233 [Scale factor 10:21]
2019-04-04T15:11:39: >Iteration 2: -logL=-152760.518, Lambda=1.0e-04, delta=1.263, step=1.0e+00, max(|grad|)=-0.019021 [Scale factor 10:21]
2019-04-04T15:11:40: >Iteration 3: -logL=-152760.518, Lambda=1.0e-05, delta=0.000, step=1.0e+00, max(|grad|)=-0.000001 [Scale factor 10:21]
2019-04-04T15:11:40:
2019-04-04T15:11:40: +============================================+
2019-04-04T15:11:40: | Maximum likelihood re-optimisation results |
2019-04-04T15:11:40: +============================================+
2019-04-04T15:11:40: === GOptimizerLM ===
2019-04-04T15:11:40: Optimized function value ..: -152760.518
2019-04-04T15:11:40: Absolute precision ........: 0.005
2019-04-04T15:11:40: Acceptable value decrease .: 2
2019-04-04T15:11:40: Optimization status .......: converged
2019-04-04T15:11:40: Number of parameters ......: 200
2019-04-04T15:11:40: Number of free parameters .: 87
2019-04-04T15:11:40: Number of iterations ......: 3
2019-04-04T15:11:40: Lambda ....................: 1e-06
2019-04-04T15:11:40:
2019-04-04T15:11:40: +=========================================+
2019-04-04T15:11:40: | Maximum likelihood optimisation results |
2019-04-04T15:11:40: +=========================================+
2019-04-04T15:11:40: === GOptimizerLM ===
2019-04-04T15:11:40: Optimized function value ..: -153218.258
2019-04-04T15:11:40: Absolute precision ........: 0.005
2019-04-04T15:11:40: Acceptable value decrease .: 2
2019-04-04T15:11:40: Optimization status .......: converged
2019-04-04T15:11:40: Number of parameters ......: 206
2019-04-04T15:11:40: Number of free parameters .: 89
2019-04-04T15:11:40: Number of iterations ......: 10
2019-04-04T15:11:40: Lambda ....................: 1e-13
2019-04-04T15:11:40: Maximum log likelihood ....: 153218.258
2019-04-04T15:11:40: Observed events (Nobs) ...: 527595.000
2019-04-04T15:11:40: Predicted events (Npred) ..: 527594.000 (Nobs - Npred = 1.00004248635378)
2019-04-04T15:11:40: === GModels ===
2019-04-04T15:11:40: Number of models ..........: 5
2019-04-04T15:11:40: Number of parameters ......: 206
2019-04-04T15:11:40: === GModelSky ===
2019-04-04T15:11:40: Name ......................: Crab
2019-04-04T15:11:40: Instruments ...............: all
2019-04-04T15:11:40: Test Statistic ............: 915.478960024426
2019-04-04T15:11:40: Observation identifiers ...: all
2019-04-04T15:11:40: Model type ................: PointSource
2019-04-04T15:11:40: Model components ..........: "PointSource" * "PowerLaw" * "Constant"
2019-04-04T15:11:40: Number of parameters ......: 6
2019-04-04T15:11:40: Number of spatial par's ...: 2
2019-04-04T15:11:40: RA .......................: 83.6331 [-360,360] deg (fixed,scale=1)
2019-04-04T15:11:40: DEC ......................: 22.0145 [-90,90] deg (fixed,scale=1)
2019-04-04T15:11:40: Number of spectral par's ..: 3
2019-04-04T15:11:40: Prefactor ................: 0.00237485707890478 +/- 0.000107670251181817 [-1,1] ph/cm2/s/MeV (free,scale=0.001,gradient)
2019-04-04T15:11:40: Index ....................: -2.47146337740947 +/- 0.0500850436160353 [5,-5] (free,scale=-1,gradient)
2019-04-04T15:11:40: PivotEnergy ..............: 1 [0.01,1000] MeV (fixed,scale=1,gradient)
2019-04-04T15:11:40: Number of temporal par's ..: 1
2019-04-04T15:11:40: Normalization ............: 1 (relative value) (fixed,scale=1,gradient)
2019-04-04T15:11:40: Number of scale par's .....: 0
The fit converged after 10 iterations and did a second fit without the source component to determine the Test Statistic value of the Crab. The source is detected with a Test Statistic of 915.7 which corresponds to a detection significance of about 30 sigma.
Note
Kuiper et al. 2001, A&A, 378, 918 presented the most comprehensive analysis of the COMPTEL Crab observations and summarize in their Table 3 the gamma-ray intensity as function of energy for the unpulsed and pulsed component of source. By adding the intensities and fitting the resulting values we obtained a prefactor of 2.5e-3, which is very close to the prefactor of 2.4e-3 obtained in the analysis above. The spectral index of the Kuiper’s data is -2.2, a bit harder than the index of -2.5 obtained in the fit.
Note
The position of a point source can also be adjusted by ctlike for
an analysis of COMPTEL data, hence you may set the corresponding parameters
to free="1"
to determine also the best fitting source position.
Warning
ctools supports for the moment only the fitting of point sources for COMPTEL data. Other spatial shapes will be implemented in the future.